THE ALGORITHM DEVELOPMENT FOR THE DAMAGE LOCATION SEARCH ON THE ELECTRIC LINE USING AN AMPLITUDE-PHASE COORDINATE CHARACTERISTIC

A.V. Logunov, Yu.K. Shlyk

Speaker: Andrey V. Logunov, postgraduate student, Industrial University of Tyumen

May 16-20, 2022
Yekaterinburg, Russia
Introduction

Main methods for determination of damage location in power lines:

Remote methods
- Pulse technique
- Wave method
- Oscillatory discharge method

Topographical methods
- Loop test
- Capacitance method
- Induction method
- Acoustical method
- Potential method
Introduction

The main disadvantages of existing methods:

• Complexity of technical implementation
• Insufficient accuracy in determining the location of damage
The idling conditions and short-circuit modes of the line.

\[\hat{U}_1 \]
\[\hat{i}_{1IDL} \]
\[\hat{i}_{1SCT} \]

\(X \) – is the coordinate of the possible damage location; \(\hat{U}_1 \) – is the line input voltage; \(\hat{i}_{1IDL} \) and \(\hat{i}_{1SCT} \) – are the line complex currents into the idling conditions and short-circuit modes respectively.
THE ALGORITHM DEVELOPMENT FOR THE DAMAGE LOCATION SEARCH ON THE ELECTRIC LINE USING AN AMPLITUDE-PHASE COORDINATE CHARACTERISTIC

Methods and Investigation Strategy

Ratios for complex currents an undamaged line:

\[\dot{I}_{1IDL} = \frac{\dot{U}_1}{Z_w \cdot \cosh(\gamma l)} \quad \dot{I}_{1SCT} = \frac{\dot{U}_1}{Z_w \cdot \sinh(\gamma l)} \]

After changing the constant \(l \) to the variable coordinate \(X \):

\[\dot{I}_{1IDL}(jX) = I_{1mIDL}(X) \cdot e^{j\psi_{1IDL}(X)} \quad \dot{I}_{1SCT}(jX) = I_{1mSCT}(X) \cdot e^{j\psi_{1SCT}(X)} \]

Amplitude-phase coordinate (APhCC) characteristics of a damaged line
Results and Discussion

$l = 10 \text{ km};$

$R_0 = 20.5 \Omega/\text{km};$ $L_0 = 0.6 \cdot 10^{-3} \text{ H/km};$

$C_0 = 35.2 \cdot 10^{-9} \text{ F/km};$ $G_0 = 0.7 \cdot 10^{-6} \text{ S/km};$

$U_{1m} = 10 \text{ V}, \Psi_m = 0^\circ, f = 20 \cdot 10^3 \text{ Hz}$

Figure 1. (APhCC)$_{IDL}$ characteristics

Figure 2. (APhCC)$_{SCT}$ characteristics
Moved on from the complex \((\text{APhCC}_{\text{IDL}})\) according to Fig. 1 to coordinate-dependent \((\text{ACC})\) and \((\text{PhCC})\) characteristics.

\[(\text{ACC})_{\text{IDL}}\] characteristics

\[(\text{PhCC})_{\text{IDL}}\] characteristics

The presented graphs are ambiguous due to the periodicity of these functions.
Results and Discussion

\[\lambda = \frac{V_{\text{ph}}}{f} \]

- \(V_{\text{ph}} \) is the phase velocity of the current and voltage waves circulation in the line

\[\lambda = 40 \text{ km} \]
\[V_{\text{ph}} = 1.7 \cdot 10^5 \text{ km/s} \]
\[f_{\text{max}} = 4250 \text{ Hz} \]

(ACC)\(_{\text{IDL}}\) characteristics with \(f = 4000 \text{ Hz} \)

(PhCC)\(_{\text{IDL}}\) characteristics with \(f = 4000 \text{ Hz} \)

The similar result can be obtained for the case of a short circuit into the line.
Conclusion

• The obtained characteristics make it possible to unambiguously determine the desired coordinate of the break X of the power transmission line using the measured values of the current of the line.

• Further research on this topic is aimed at conducting a cycle of not only laboratory but also industrial tests of the proposed algorithm for determining the damage location to an electric line.
THE ALGORITHM DEVELOPMENT FOR THE DAMAGE LOCATION SEARCH ON THE ELECTRIC LINE USING AN AMPLITUDE-PHASE COORDINATE CHARACTERISTIC

A.V. Logunov, Yu.K. Shlyk

Speaker: Andrey V. Logunov, postgraduate student, Industrial University of Tyumen

May 16-20, 2022
Yekaterinburg, Russia