Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б.Н. Ельцина

Математическая физика

Сборник типовых заданий и справочные сведения

для студентов физических специальностей

УДК 517.95 : 517.58

Научный редактор доц., канд. физ.-мат. наук Р.М. Минькова

Составители: Р.М. Минькова, В.В. Трещева, А.Б. Абрамова, Г.Я. Карасик, З.П. Дема.

Математическая физика: сборник типовых заданий и справочные сведения / Р.М. Минькова, В.В. Трещева, А.Б. Абрамова, Г.Я. Карасик, З.П. Дема. Екатерин-бург:УрФУ, 2013. 56 с.

В работе приведены индивидуальные задания по специальным функциям и уравнениям математической физики, а также справочные сведения, необходимые для выполнения этих заданий. Пособие предназначено для студентов физико-технического факультета.

Типовой расчет по задаче Штурма-Лиувилля составлен Миньковой Р.М., Трещевой В.В. Типовой расчет по специальным функциям составлен Миньковой Р.М., Трещевой В.В., Карасик Г.Я., Абрамовой А.Б. Типовой расчет по приведению уравнений математической физики к каноническому виду составлен Миньковой Р.М. Типовой расчет по задачам математической физики составлен Карасик Г.Я., Дема З.П., Трещевой В.В., Миньковой Р.М. Справочные сведения подобраны Миньковой Р.М.

Библиогр.: 9 назв. Рис.4.

Подготовлено кафедрой «Вычислительные методы и уравнения математической физики» при поддержке физико-технического факультета

© Уральский федеральный университет, 2013

1. Задача Штурма-Лиувилля

Вариант 1

1). Найти собственные функции оператора Ly = y'' + y' - 2y, удовлетворяющие граничным условиям y(0) = y(4) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям данной краевой задачи функции:

a)
$$f(x) = -5e^{-x/2}\sin \pi x$$
; b) $g(x) = \begin{cases} x \cdot e^{-x/2}, & 0 \le x \le 4, \\ 0, & x = 4. \end{cases}$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(0) = 0, $y'(l) + h \cdot y(l) = 0$. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y(1) = 0, y'(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' 2xy'$, $x \in [-1;1]$. Разложить функцию $f(x) = 9x^2 3x 1$ в ряд Фурье по этим собственным функциям.

Вариант 2

1). Найти собственные функции оператора Ly = y'' + y' - 2y, удовлетворяющие граничным условиям y(0) = 0, y'(4) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям данной краевой задачи функции:

a)
$$f(x) = -\frac{1}{2}e^{-x/2}\sin\frac{\gamma_6 x}{4}$$
 $\left(\operatorname{tg} \gamma_6 = \frac{\gamma_6}{2} \right)$; b) $g(x) = \begin{cases} x \cdot e^{-x/2}, & 0 \le x \le 4, \\ 0, & x = 4. \end{cases}$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(l) = 0, $-y'(0) + h \cdot y(0) = 0$. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 10x^2 3x 3$ в ряд Фурье по этим собственным функциям.

Вариант 3

1). Найти собственные функции оператора Ly = y'' + y' - 2y, удовлетворяющие граничным условиям y'(0) = 0, y(4) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям данной краевой задачи функции:

a)
$$f(x) = e^{-x/2} \left(3\gamma_2 \cos \frac{\gamma_2 x}{4} + 6\sin \frac{\gamma_2 x}{4} \right) \quad \left(\operatorname{tg} \gamma_2 = -\frac{\gamma_2}{2} \right); \quad b) \quad g(x) = 3e^{-x/2}.$$

3

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 0, $y'(l) + h \cdot y(l) = 0$. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y(1) = 0, y(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = x y'' + (1-x)y', $x \in (0; \infty)$. Разложить функцию $f(x) = x^2 + 3x 2$ в ряд Фурье по этим собственным функциям.

1). Найти собственные функции оператора Ly = y'' + y' - 2y, удовлетворяющие граничным условиям y'(0) = 0, y'(4) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = 4e^{-x/2} \left(\cos 2\pi x + \frac{1}{4\pi} \sin 2\pi x\right)$$
; b) $g(x) = \frac{x}{2} \cdot e^{-x/2}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(l) = 0, $-y'(0) + h \cdot y(0) = 0$. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y'(5) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = y'' 2xy', $x \in (-\infty; \infty)$. Разложить функцию $f(x) = 8x^2 6x 2$ в ряд Фурье по этим собственным функциям.

Вариант 5

1). Найти собственные функции оператора Ly = y'' + 4y' + 3y, удовлетворяющие граничным условиям y(0) = 0, y(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -\frac{1}{2}e^{-2x}\sin 8\pi x$$
; b) $g(x) = x(x-1)\cdot e^{-2x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям $-y'(0) + h \cdot y(0) = 0$, $y'(l) + h \cdot y(l) = 0$. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y(1) = 0, y(2) + hy'(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = \left(1 x^2\right)y'' 2xy' \frac{y}{1 x^2}$, $x \in (-1; 1)$. Разложить функцию $f(x) = 3\sqrt{1 x^2} \ (1 7x)$ в ряд Фурье по этим собственным функциям.

Вариант 6

1). Найти собственные функции оператора Ly = y'' + 4y' + 3y, удовлетворяющие граничным условиям y(0) = 0, y'(1) = 0. Указать вес ортогональности собствен-

ных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = \frac{1}{5} e^{-2x} \sin \gamma_3 x$$
 $\left(\operatorname{tg} \gamma_3 = \frac{\gamma_3}{2} \right)$; b) $g(x) = -\frac{x}{3} \cdot e^{-2x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(0) = y(l), y'(0) = y'(l). Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y(3) + hy'(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' 2xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 3 6x^2$ в ряд Фурье по этим собственным функциям.

Вариант 7

1). Найти собственные функции оператора Ly = y'' + 4y' + 3y, удовлетворяющие граничным условиям y'(0) = 0, y(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -0.5e^{-2x} \left(\cos \gamma_3 x + \frac{2}{\gamma_3} \sin \gamma_3 x\right) \quad (\operatorname{tg} \gamma_3 = -\gamma_3); \quad b) \quad g(x) = -3 \cdot e^{-2x}.$$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 0, y'(l) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 14x^2 x 4$ в ряд Фурье по этим собственным функциям.

- 1). Найти собственные функции оператора Ly = y'' + 4y' + 3y, удовлетворяющие граничным условиям y'(0) = 0, y'(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:
 - a) $f(x) = e^{-2x} (\sin 2\pi x + \pi \cos 2\pi x + \sin 4\pi x + 2\pi \cos 4\pi x);$ b) $g(x) = x^2 \cdot e^{-2x}$.
- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 0, y(l) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = y'' 2x y', $x \in (-\infty; \infty)$. Разложить функцию $f(x) = -4x^2 + 4x + 3$ в ряд Фурье по этим собственным функциям.

1). Найти собственные функции оператора Ly = y'' + 2y' - 3y, удовлетворяющие граничным условиям y(0) = 0, y(2) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = 5 e^{-x} \sin 4\pi x$$
; b) $g(x) = x(x-2) \cdot e^{-x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(l) = 0, y(-l) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y'(5) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = xy'' + (2-x)y', $x \in (0; \infty)$. Разложить функцию $f(x) = -x^2 + 4x + 5$ в ряд Фурье по этим собственным функциям.

Вариант 10

1). Найти собственные функции оператора Ly = y'' + 2y' - 3y, удовлетворяющие граничным условиям y(0) = 0, y'(2) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -3 e^{-x} \sin \frac{\gamma_5 x}{2}$$
 $\left(\operatorname{tg} \gamma_5 = \frac{\gamma_5}{2} \right)$; b) $g(x) = x^2 \cdot e^{-x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(-l) = 0, y'(l) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y(4) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = \left(1 x^2\right)y'' 2\,x\,y' \frac{4\,y}{1 x^2}, \quad x \in \left(-1; 1\right).$ Разложить функцию $f\left(x\right) = 15\left(1 x^2\right) \cdot \left(1 2x\right)$ в ряд Фурье по этим собственным функциям.

Вариант 11

1). Найти собственные функции оператора Ly = y'' + 2y' - 3y, удовлетворяющие граничным условиям y'(0) = 0, y(2) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -2 e^{-x} \left(\gamma_2 \cos \frac{\gamma_2 x}{2} + 2 \sin \frac{\gamma_2 x}{2} \right)$$
 $\left(\operatorname{tg} \gamma_2 = \frac{-\gamma_2}{2} \right)$; b) $g(x) = \left(x^3 - 2x^2 \right) \cdot e^{-x}$.

2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(l) + h y(l) = 0, -y'(-l) + h y(-l) = 0. Найти нормы собственных функций.

- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y(1) = 0, y(4) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' 2xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 5x + 6x^2 12$ в ряд Фурье по этим собственным функциям.

1). Найти собственные функции оператора Ly = y'' + 2y' - 3y, удовлетворяющие граничным условиям y'(0) = 0, y'(2) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = 4 e^{-x} (\pi \cos \pi x + \sin \pi x)$$
; b) $g(x) = x^2 \cdot e^{-x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(l) = y(-l), y'(l) = y'(-l). Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y'(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 5x + 8x^2 + 8$ в ряд Фурье по этим собственным функциям.

Вариант 13

1). Найти собственные функции оператора Ly = y'' - 2y' - 3y, удовлетворяющие граничным условиям y(0) = y(3) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = 12 e^x \sin 3\pi x$$
; b) $g(x) = 2x(x-3) \cdot e^x$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(0) = 0, y'(l) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(2) + hy'(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = y'' 2xy', $x \in (-\infty; \infty)$. Разложить функцию $f(x) = 12x^2 2x + 1$ в ряд Фурье по этим собственным функциям.

Вариант 14

1). Найти собственные функции оператора Ly = y'' - 2y' - 3y, удовлетворяющие граничным условиям y(0) = 0, y'(3) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -\frac{1}{5} e^x \sin \frac{\gamma_3 x}{\sqrt{3}} \quad \left(\operatorname{tg} \gamma_3 = \frac{-\gamma_3}{3} \right); \quad b) \quad g(x) = \left(4x^2 - 15x \right) \cdot e^x.$$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(5) = 0, y'(-5) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y'(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = x\,y'' + (1-x)\,y', \ x \in (0; \infty)$. Разложить функцию $f(x) = -2\,x^2 + 6\,x + 5$ в ряд Фурье по этим собственным функциям.

1). Найти собственные функции оператора Ly = y'' - 2y' - 3y, удовлетворяющие граничным условиям y'(0) = 0, y(3) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -\frac{1}{2} e^x \left(\gamma_6 \cos \frac{\gamma_6 x}{3} - 3 \sin \frac{\gamma_6 x}{3} \right) \left(\operatorname{tg} \gamma_6 = \frac{\gamma_6}{3} \right);$$
 b) $g(x) = \left(x^3 - 3x^2 \right) \cdot e^x.$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(0) = y(1), y'(0) = y'(1). Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(5) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора Ly = y'' 2xy', $x \in (-\infty; \infty)$. Разложить функцию $f(x) = 28x^2 6x 9$ в ряд Фурье по этим собственным функциям.

Вариант 16

1). Найти собственные функции оператора Ly = y'' - 2y' - 3y, удовлетворяющие граничным условиям y'(0) = 0, y'(3) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -\frac{8}{3}e^{x}(6\pi\cos 2\pi x - 3\sin 2\pi x)$$
; b) $g(x) = (-5x^{3} + 18x^{2}) \cdot e^{x}$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 0, y'(4) + 2y(4) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = \left(1 x^2\right)y'' 2xy' \frac{4y}{1 x^2}, \ x \in \left(-1; 1\right)$. Разложить функцию
- $f(x) = (1-x^2) \cdot (6-5x)$ в ряд Фурье по этим собственным функциям.

Вариант 17

1). Найти собственные функции оператора Ly = y'' - 2y' + y, удовлетворяющие граничным условиям y(0) = 0, y(1) = 0. Указать вес ортогональности собствен-

ных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = 0.1 e^x \sin 5\pi x$$
; b) $g(x) = 2x^2 \cdot e^x$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 4y(0), y'(6) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) + hy'(3) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = (1-x^2)y'' xy'$, $x \in (-1;1)$. Разложить функцию $f(x) = 4x^2 3x + 4$ в ряд Фурье по этим собственным функциям.

Вариант 18

1). Найти собственные функции оператора Ly = y'' - 2y' + y, удовлетворяющие граничным условиям y'(0) = 0, y(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = -3e^x(\gamma_3\cos\gamma_3x - \sin\gamma_3x)$$
 $(tg\gamma_3 = \gamma_3)$; b) $g(x) = (x^2 - x)e^x$.

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(2) = y(-2), y'(2) = y'(-2). Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(2) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = \left(1 x^2\right)y'' 2xy', x \in \left(-1;1\right)$. Разложить функцию $f(x) = 12x^2 3x + 3$ в ряд Фурье по этим собственным функциям.

Вариант 19

1). Найти собственные функции оператора Ly = y'' - 2y' + y, удовлетворяющие граничным условиям y(0) = 0, y'(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:

a)
$$f(x) = \frac{1}{4}e^{x}(\sin \gamma_{2}x - 3\sin \gamma_{5}x)$$
 $(\operatorname{tg} \gamma_{2} = -\gamma_{2}, \operatorname{tg} \gamma_{5} = -\gamma_{5});$ b) $g(x) = (2x^{2} - 3x)e^{x}.$

- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям 2y'(1) = -y(1), 2y'(-1) = y(-1). Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(4) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = x\,y'' + (3-x)\,y', \ x \in (0;\infty)$. Разложить функцию $f(x) = -x^2 5\,x + 6$ в ряд Фурье по этим собственным функциям.

- 1). Найти собственные функции оператора Ly = y'' 2y' + y, удовлетворяющие граничным условиям y'(0) = 0, y'(1) = 0. Указать вес ортогональности собственных функций. Разложить в ряд Фурье по собственным функциям решенной краевой задачи функции:
 - a) $f(x) = e^x (6\pi \cos 3\pi x + 4\pi \cos 4\pi x 2\sin 3\pi x \sin 4\pi x);$ b) $g(x) = (3x^3 4x^2) \cdot e^x$.
- 2). Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y(0) = 0, y'(3) + y(3) = 0. Найти нормы собственных функций.
- 3). Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y'(1) = 0, y(7) = 0.
- 4). Найти собственные значения и ограниченные собственные функции оператора $Ly = \left(1 x^2\right)y'' 2xy' \frac{y}{1 x^2}, \ x \in \left(-1; 1\right)$. Разложить функцию

$$f(x) = 5\sqrt{1-x^2} \cdot (1-6x)$$

в ряд Фурье по этим собственным функциям.

2. Специальные функции

Вариант 1

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.5x^2$ на отрезке [0;2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(1)$, $S_3(1)$ со значением функции f(1).
- 3. Разложить в ряд Фурье по полиномам Эрмита $H_n(x)$ функцию $f(x) = \operatorname{ch} x$. Вычислить интегралы $I_1 = \int_{-\infty}^{+\infty} e^{-x^2} \operatorname{ch} x \cdot H_6(x) dx$, $I_2 = \int_{-\infty}^{+\infty} e^{-x^2} \operatorname{ch} x \cdot H_7(x) dx$.
 - 4. Разложить в ряд Фурье по сферическим функциям функцию $f(\theta, \varphi) = \cos\left(2\varphi \frac{\pi}{3}\right) \cdot \sin^2\theta + 6\cos^2\theta \ .$
 - 5. Вывести соотношение для многочленов Эрмита $H_n(x)$:

$$H_{n+1}(x) = 2x \cdot H_n(x) - 2n \cdot H_{n-1}(x)$$
.

6. Вычислить значения многочленов Лагерра $L_n(x)$ в точке x = 0.

Вариант 2

1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' - \frac{1}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.

- 2. Разложить функцию $f(x) = x (x^2 + 1)$ на отрезке [0;2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(1)$, $S_3(1)$ со значением функции f(1).
 - 3. Разложить в ряд Фурье по многочленам Лежандра $P_n(x)$ функцию

$$f(x) = \frac{1}{3}x^4 + x^3 - \frac{1}{2}, \quad x \in (-1; 1).$$

Вычислить интегралы $I_1 = \int_{-1}^{1} f(x) P_4(x) dx$, $I_2 = \int_{-1}^{1} f(x) P_9(x) dx$.

- 4. Разложить в ряд Фурье по сферическим функциям функцию $f(\theta, \varphi) = \sin^6 \theta \cdot \sin 6 \varphi + 9 \cos^2 \theta 8$.
- 5. Зная функции Бесселя $J_{0}(x)$, $J_{1}(x)$, получить $J_{4}(x)$.
- 6. Доказать соотношение для полиномов Лагерра $L_n(x) = L'_n(x) L'_{n+1}(x)$.

Вариант 3

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.5 x^2 + 1$ на отрезке [0;2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(1)$, $S_3(1)$ со значением функции f(1).
 - 3. Разложить в ряд Фурье по многочленам Лежандра функцию

$$f(x) = \begin{cases} 0, -1 \le x \le 0, \\ 1, 0 < x \le 1. \end{cases}$$

Вычислить четыре первые коэффициенты ряда.

- 4. Разложить функцию $f(\theta, \varphi) = 3\sin^2\theta \cdot (\cos\theta\cos3\varphi \cos3\varphi 1)$ в ряд по сферическим функциям.
- 5. Доказать соотношение для модифицированных функций Бесселя:

$$\left(x^{p} \cdot I_{p}(x)\right)' = x^{p} \cdot I_{p-1}(x).$$

6. Вычислить интеграл $\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) \cdot H_n^{"}(x) dx$, где $H_n(x)$ — многочлен Эрмита.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{0,25}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 2\sqrt{x}$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить пять первых коэффициентов

ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_4(1)$, $S_5(1)$ со значением функции f(1).

- 3. Разложить в ряд Фурье по полиномам Эрмита функцию $f(x) = \sin 2x$. Вычислить интегралы $\int_{-\infty}^{+\infty} f(x) \cdot e^{-x^2} H_5(x) dx$, $\int_{-\infty}^{+\infty} f(x) \cdot e^{-x^2} H_8(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = 35\cos^4\theta + 15\sin^2\theta \cdot (\cos\theta 1) \cdot \sin 2\varphi$ в ряд Фурье по сферическим функциям.
 - 5. Вычислить интеграл $\int_{0}^{1} P_{n}(x) dx$, где $P_{n}(x)$ полином Лежандра.
 - 6. Вывести соотношение для модифицированных функций Бесселя

$$\left(x^{-p} \cdot I_p(x)\right)' = x^{-p} \cdot I_{p+1}(x).$$

Вариант 5

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{1}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(1,5) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию f(x) = x на отрезке [0; 1,5] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(1)$, $S_3(1)$ со значением функции f(1).
 - 3. Разложить в ряд Фурье по многочленам Чебышева 1-го рода $T_n(x)$ функ-

цию
$$f(x) = x^5 + 3x^2 + 1$$
. Вычислить интегралы
$$\int_{-1}^{1} \frac{f(x) \cdot T_n(x)}{\sqrt{1 - x^2}} dx$$
 для $n = 5$ и $n = 4$.

- 4. Разложить функцию $f(\theta, \varphi) = 15\cos^2\theta \cdot \sin\theta \cdot \cos\varphi + 105\sin^3\theta \cdot (1+\cos\theta) \cdot \sin 3\varphi$ в ряд Фурье по сферическим функциям.
 - 5. Вывести соотношение для функций Бесселя

$$\left(x^{-p} \cdot J_p(x)\right)' = -x^{-p} \cdot J_{p+1}(x).$$

6. Найти значение производной полинома Лежандра $P_n(x)$ в точке x=0.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{0,25}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = \sqrt{x}$ на отрезке [0;2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить 5 первых коэффициентов ряда

Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_4(1)$, $S_5(1)$ со значением функции f(1).

- 3. Разложить в ряд по многочленам Лежандра функцию $f(x) = 5x^3 + 3x^2 5x + 2$. Вычислить интегралы $\int_{-1}^{1} f(x) \cdot P_n(x) dx$ для n = 3 и n = 10.
- 4. Разложить функцию $f(\theta, \varphi) = \cos \varphi \cdot \sin \theta + \cos^3 \theta$ в ряд Фурье по сферическим функциям.
 - 5. Для многочленов Лагерра $L_n(x)$ вывести соотношение

$$(n+1)\cdot L_{n+1}(x)+(x-2n-1)\cdot L_n(x)+n\cdot L_{n-1}(x)=0$$
.

6. Вычислить значения полиномов Чебышева $T_n(x)$ в точке x = 0.

Вариант 7

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, $0,1 \cdot y(1) + y'(1) = 0$. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = x^2$ на отрезке [0;1] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(0,5)$, $S_3(0,5)$ со значением функции f(0,5).
- 3. Разложить функцию $f(x) = \sinh x$ в ряд Фурье по полиномам Эрмита $H_n(x)$. Вычислить интегралы $\int\limits_{-\infty}^{+\infty} e^{-x^2} f(x) \cdot H_n(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = 6 \sin^2 \theta \cdot \cos^2 \varphi + 105 \sin^3 \theta \cdot \sin^3 \varphi$ в ряд Фурье по сферическим функциям.
 - 5. Для многочленов Эрмита $H_n(x)$ вывести соотношение $H'_n(x) = 2n \cdot H_{n-1}(x)$.
 - 6. Вычислить значение производной многочлена Чебышева $T_n(x)$ при x=0.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 2 0.4x^2$ на отрезке [0;3] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить четыре первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_3(2)$, $S_4(2)$ со значением функции f(2).
 - 3. Разложить в ряд Фурье по многочленам Лежандра $P_n(x)$ функцию

$$f(x) = 3x^4 - 2x^2 + \frac{1}{3}x - 5$$
, $x \in (-1; 1)$.

Вычислить интегралы $\int_{-1}^{1} f(x) \cdot P_n(x) dx$ для n = 4 и n = 10.

- 4. Разложить функцию $f(\theta, \varphi) = 5\cos^2 \varphi \cdot \sin^2 \theta \cdot \cos \theta$ в ряд по сферическим функциям.
 - 5. Вычислить значение полиномов Эрмита $H_n(x)$ в точке x = 0.
 - 6. Вывести соотношение для обобщенных многочленов Лагерра

$$\frac{d}{dx}L_n^{\alpha}(x) - \frac{d}{dx}L_{n-1}^{\alpha}(x) = L_n^{\alpha}(x).$$

Вариант 9

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{1}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.5x^3 x$ на отрезке [0; 3] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(2)$, $S_3(2)$ со значением функции f(2).
- 3. Разложить в ряд Фурье по полиномам Лежандра $P_n(x)$ функцию $f(x) = -x^3 + 2x^2 x 2$, $x \in (-1; 1)$. Вычислить интегралы $\int_{-1}^1 f(x) \cdot P_n(x) dx$ для n = 5 и n = 7.
- 4. Разложить функцию $f(\theta, \varphi) = (\sin \theta + \sin 2\theta) \cdot \sin(\varphi + \frac{\pi}{6})$ в ряд Фурье по сферическим функциям.
 - 5. Вывести соотношение для многочленов Эрмита $H_n(x)$:

$$H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)$$
.

6. Вывести соотношение для функций Бесселя

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \cdot \cos x.$$

Вариант 10

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(3) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 2 x^2$ на отрезке [0; 3] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить четыре первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_3(1)$, $S_4(1)$ со значением функции f(1).
 - 3. Разложить в ряд Фурье по многочленам Эрмита $H_n(x)$ функцию $\cosh 3x$.

Вычислить интеграл $\int_{-\infty}^{+\infty} e^{-x^2} \cosh 3x \cdot H_5(x) dx$.

- 4. Разложить в ряд Фурье по сферическим функциям функцию $f(\theta, \varphi) = 3\cos^2\theta + \sin^3\theta \cdot \cos\theta \cdot \cos\left(3\varphi + \pi/4\right)$.
- 5. Зная обобщенные многочлены Лагерра $L_0^{\alpha}(x)$ и $L_1^{\alpha}(x)$, найти $L_2^{\alpha}(x)$, $L_3^{\alpha}(x)$.
 - 6. Вычислить значение производной полинома Эрмита $H_n(x)$ в точке x = 0.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{1}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.3x^2 0.1$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(2)$, $S_3(2)$ со значением функции f(2).
- 3. Разложить в ряд Фурье по полиномам Лежандра $P_n(x)$ функцию $f(x) = 4x^3 + \frac{1}{2}x^2 + 3x 1$, $x \in (-1; 1)$. Вычислить $\int_{-1}^{1} f(x) P_n(x) dx$.
 - 4. Разложить в ряд Фурье по сферическим функциям функцию $f(\theta,\varphi) = \sin^3\theta \cdot \sin\left(3\varphi + \pi/4\right) + \cos\varphi \cdot \sin\theta \cdot \cos^2\frac{\theta}{2}.$
 - 5. Вывести рекуррентное соотношение для многочленов Лагерра $x L'_n(x) = n \lceil L_n(x) L_{n-1}(x) \rceil$.

Указание. Использовать рекуррентные соотношения

- a) $(n+1)L_{n+1}(x) + (x-2n-1)L_n(x) + nL_{n-1}(x) = 0;$ 6) $L_n(x) = L'_n(x) L'_{n+1}(x)$.
- 6. Выразить функцию Бесселя $J_{3/2}(x)$ через элементарные функции.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(1,5) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.2x^2 0.3$ на отрезке [0; 1.5] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(0,6)$, $S_3(0,6)$ со значением функции f(0,6).
 - 3. Разложить в ряд Фурье по полиномам Эрмита $H_n(x)$ функцию $f(x) = \cos 2x$. Вычислить $\int\limits_{-\infty}^{+\infty} e^{-x^2} f(x) \cdot H_n(x) dx$.
 - 4. Разложить в ряд Фурье по сферическим функциям функцию

$$f(\theta,\varphi) = \sin(\pi/4 - \varphi) \cdot \sin\theta + 30 \sin^2\theta \cdot \cos^2\frac{\theta}{2} \cdot \cos 2\varphi$$

5. Доказать для многочленов Лежандра равенство

$$\int_{x}^{1} P_{n}(t) dt = \frac{1}{2n+1} \left[P_{n-1}(x) - P_{n+1}(x) \right].$$

6. Выразить через элементарные функции функцию Бесселя $J_{-5/2}\left(x\right)$.

Вариант 13

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{0.25}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = \sqrt{x}$ на отрезке [0;3] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить 5 первых коэффициентов ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_4(2)$, $S_5(2)$ со значением функции f(2).
- 3. Разложить в ряд Фурье по полиномам Лежандра $P_n(\cos\theta)$ функцию $f(\theta) = \cos 3\theta$, $\theta \in [0,\pi]$. Вычислить интеграл $\int_0^\pi \sin\theta \cdot f(\theta) \cdot P_n(\cos\theta) d\theta$ для n=2, n=3.
- 4. Разложить функцию $f(\theta, \varphi) = \cos^2 \frac{\theta}{2} (\sin \theta \sin(\varphi + \frac{\pi}{6}) + 1)$ в ряд Фурье по сферическим функциям.
 - 5. Доказать для многочленов Чебышева $T_n(x)$ соотношение

$$T_n(x) + T_{n-2}(x) = 2 x T_{n-1}(x), |x| < 1.$$

Указание. Использовать формулу $T_n(x) = \cos(n \arccos x)$.

6. Выразить функцию Бесселя $J_{5/2}(x)$ через элементарные функции.

Вариант 14

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, 2y(2) + y'(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию f(x) = 1 на отрезке [0; 2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить четыре первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_3(1)$, $S_4(1)$ со значением функции f(1).
 - 3. Разложить в ряд Фурье по полиномам Лежандра $P_n(x)$ функцию

$$f(x) = \begin{cases} 1, -1 < x \le 0, \\ 2, 0 < x < 1. \end{cases}$$

Вычислить первые четыре коэффициента ряда и интеграл

$$\int_{-1}^{1} f(x) P_n(x) dx \quad (n = 5, n = 6).$$

- 4. Разложить функцию $f(\theta, \varphi) = 21\sin^2 2\theta \cdot \cos 2\varphi + \cos \theta \cdot \sin^2 \theta$ в ряд Фурье по сферическим функциям.
 - 5. Вывести соотношение для модифицированной функции Бесселя

$$I_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \, \operatorname{sh} x$$
.

6. Вычислить интеграл $\int_{-\infty}^{+\infty} x H_n(x) H_m(x) e^{-x^2} dx$, где $H_n(x)$, $H_m(x)$ – многочлены Эрмита.

Вариант 15

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.3 x^2 0.1$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(2)$, $S_3(2)$ со значением функции f(2).
 - 3. Разложить в ряд Фурье по многочленам Эрмита функцию $f(x) = \sin x$. Вычислить интеграл $\int_{-\infty}^{+\infty} e^{-x^2} f(x) H_n(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = \sin \theta \cdot \sin \varphi \cdot (5 + 6\cos \theta) + \sin^3 \theta \cdot \cos \theta \cdot \cos 3\varphi$ в ряд Фурье по сферическим функциям.
 - **5.** Доказать, что для многочленов Лагерра $L_n(x)$ имеет место соотношение $(n+1)L_{n+1}(x) (2n+1-x)L_n(x) + nL_{n-1}(x) = 0.$
 - 6. Вывести соотношение для функций Бесселя

$$\int J_{k+2}(x) dx = \int J_{k}(x) dx - 2J_{k+1}(x).$$

Вариант 16

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{1}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = x^3 + 2x$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(2)$, $S_3(2)$ со значением функции f(2).
 - 3. Разложить в ряд Фурье по многочленам Лежандра функцию

$$f(x) = \begin{cases} 0, & -1 \le x < 0, \\ 1, & 0 \le x \le 1. \end{cases}$$

Вычислить первые четыре коэффициента ряда и интеграл $\int_{-1}^{1} f(x) P_5(x) dx$.

- 4. Разложить функцию $f(\theta, \varphi) = \sin 3\theta \cdot \cos \varphi + \cos^3 \theta$ в ряд Фурье по сферическим функциям.
 - 5. Показать, что при $0 < k \le n$ для полиномов Эрмита имеет место формула $H_n^{(k)}(x) = 2^k \, n \, (n-1)...(n-k+1) H_{n-k}(x).$
 - 6. Вычислить значения полиномов Чебышева $T_n(x)$ в точке x = -1.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = x^2 0.5$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(2)$, $S_3(2)$ со значением функции f(2).
- 3. Разложить в ряд Фурье по полиномам Эрмита функцию $f(x) = \sinh 3x$. Вычислить интеграл $\int_{-\infty}^{+\infty} e^{-x^2} \sinh 3x \cdot H_n(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = \sin^2 \theta \cdot (3 \sin 2\varphi) + \sin^3 \theta \cdot \cos^2 \frac{\theta}{2} \cdot \cos 3\varphi$ в ряд Фурье по сферическим функциям.
- 5. Выразить функции Бесселя второго рода $N_{1/2}(x)$, $N_{-1/2}(x)$ через элементарные функции.
 - 6. Вычислить интеграл $\int_{-\infty}^{+\infty} x^2 e^{-x^2} \cdot H_n(x) \cdot H_m(x) dx$.

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(2) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 0.5 x^2 + 1$ на отрезке [0;2] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить три первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_2(1)$, $S_3(1)$ со значением функции f(1).
- 3. Разложить в ряд Фурье по многочленам Лагерра $L_n(x)$ функцию $f(x) = 2x^4 + x^2 2$. Вычислить $\int_0^\infty e^{-x} f(x) L_n(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = \sin 3\theta \cdot \cos \varphi + \sin^2 \theta \cdot \sin^2 \frac{\theta}{2} \cdot \sin 2\varphi$ в ряд Фурье по сферическим функциям.

- 5. Показать, что для многочленов Эрмита $H_n(x)$ имеет место рекуррентное соотношение $H_{n-1}(x) = 2(xH_n(x)-nH_{n-1}(x))$. Используя его, вычислить $H_2(x)$, $H_3(x)$, $H_4(x)$.
 - 6. Вычислить интеграл $\int_0^1 \left[x P_n(x) \right]^2 dx$, где $P_n(x)$ многочлен Лежандра.

Указание. Использовать рекуррентное соотношение

$$(n+1)P_{n+1}(x) = (2n+1) \cdot x \cdot P_n(x) - n P_{n-1}(x), \quad (n \ge 1) \quad (n \ge 1).$$

Вариант 19

- 1. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y'(3) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 2. Разложить функцию $f(x) = 2 x^2$ на отрезке [0; 3] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить четыре первых коэффициента ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_3(1)$, $S_4(1)$ со значением функции f(1).
- 3. Разложить в ряд Фурье по многочленам Эрмита $H_n(x)$ функцию $f(x) = e^{-2x}$. Вычислить интеграл $\int_{-\infty}^{+\infty} e^{-2x-x^2} H_5(x) dx$.
- 4. Разложить функцию $f(\theta, \varphi) = \cos^2 \theta + \sin^4 \theta \cdot \sin 2\varphi$ в ряд Фурье по сферическим функциям.
 - 5. Вывести соотношение для функций Бесселя

$$\int_0^x J_n(t) dt = 2 \left[J_{n+1}(x) + J_{n+3}(x) + J_{n+5}(x) + \dots \right].$$

6. Показать, что многочлены Лагерра удовлетворяют рекуррентному соотношению $L_n(x) = L'_n(x) - L'_{n+1}(x)$.

Вариант 20

- 3. Найти собственные функции оператора $Ly = y'' + \frac{1}{x}y' \frac{0,25}{x^2}y$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(4) = 0. Указать вес ортогональности и вычислить нормы этих собственных функций.
- 4. Разложить функцию $f(x) = 2\sqrt{x}$ на отрезке [0; 4] в ряд Фурье по собственным функциям предыдущей задачи. Вычислить пять первых коэффициентов ряда Фурье. Вычислить и сравнить частичные суммы ряда Фурье $S_4(1)$, $S_5(1)$ со значением функции f(1).
 - 5. Разложить в ряд Фурье по полиномам Лежандра функцию

$$f(x) = \begin{cases} -1, & -1 \le x < 0, \\ 1, & 0 \le x \le 1. \end{cases}$$

Вычислить первые четыре коэффициента ряда и интеграл

$$\int_{-1}^{1} f(x) P_n(x) dx.$$

- 6. Разложить функцию $f(\theta, \varphi) = \sin^3 \theta \cdot \cos \theta \cdot \cos \left(3\varphi + \frac{\pi}{4}\right) + \sin \theta \cdot \sin^2 \frac{\theta}{2} \cdot \cos \varphi$ в ряд Фурье по сферическим функциям.
- 7. Вывести рекуррентное соотношение для модифицированных функций Бесселя

$$I_{p+1}(x) = -I_{p-1}(x) + \frac{2 p I_p(x)}{x}$$
.

8. Пользуясь определением, найти многочлены Чебышева $T_0(x)$, $T_1(x)$, а затем, используя соответствующие рекуррентные соотношения, записать $T_2(x), T_3(x), T_4(x).$

3. Приведение уравнений математической физики к каноническому виду

Задача 1. Определить тип уравнения и привести его к каноническому виду

- 1) $y^2 u_{xx} + 2 x y u_{xy} + x^2 u_{yy} = 0$.
- 2) $x^2 u_{xx} + 2x y u_{xy} 3y^2 u_{yy} 2x u_x + 4y u_y + 16x^4 u = 0$.
- 3) $(1+x^2)u_{xx} + (1+y^2)u_{yy} + xu_x + yu_y = 0$.
- 4) $u_{xx}\sin^2 x 2yu_{xy}\sin x + y^2u_{yy} = 0$.
- (x>0, y<0).5) $xu_{xx} - yu_{yy} = 0$
- 6) $u_{xx} 2u_{xy} 3u_{yy} + u_y = 0.$ 7) $u_{xx} 6u_{xy} + 10u_{yy} + u_x 3u_y = 0.$ 8) $4u_{xx} + 4u_{xy} + u_{yy} 2u_y = 0.$
- 9) $x^2 u_{xx} + y^2 u_{yy} = 0$.
- 10) $v^2 u_{rr} + x^2 u_{rr} = 0$
- 11) $4v^2u_{xx} e^{2x}u_{yy} = 0$.
- 12) $u_{xx} 2\sin x \cdot u_{xy} + (2 \cos^2 x)u_{yy} = 0.$
- 13) $x y u_{xx} + u_{yy} + \frac{1}{2} y u_x \frac{1}{2y} u_y = 0 \quad (x > 0, y > 0).$
- 14) $y^2 u_{xx} 2 x y u_{xy} + x^2 u_{yy} = 0$.
- 15) $y^2 u_{xx} x^2 u_{yy} 2x u_x = 0.$
- 16) $u_{xx} + 2u_{xy} + \cos^2 x \cdot u_{yy} \cot x \cdot (u_x + u_y) = 0$
- 17) $x^{2}u_{xx} 2xy \cdot u_{xy} + y^{2}u_{yy} + xu_{x} + yu_{y} = 0.$ 18) $u_{xx} + yu_{yy} + 2u_{y} = 0 (y > 0).$ 19) $u_{xx} 2u_{xy} + u_{yy} + 2u_{x} u_{y} + u = 0.$

- 20) $u_{xx} 2\cos x \cdot u_{xy} (3 + \sin^2 x) \cdot u_{yy} yu_y = 0.$
- 21) $\operatorname{tg}^{2} x \cdot u_{xx} 2y \cdot \operatorname{tg} x \cdot u_{xy} + y^{2} u_{yy} + \operatorname{tg}^{3} x \cdot u_{x} = 0.$ 22) $x^{2} u_{xx} + 2x y u_{xy} 3y^{2} u_{yy} 2x u_{x} + 4y u_{y} + 16x^{4} u = 0.$
- 23) $(1+x^2)u_{xx} + (1+y^2)u_{yy} + xu_x + yu_y = 0.$

24)
$$\sin^2 x \cdot u_{xx} - 2y \sin x \cdot u_{xy} + y^2 u_{yy} = 0.$$

25)
$$u_{xx} + 4u_{xy} + 5u_{yy} + u_x + 2u_y = 0$$
.

Задача 2. Найти общее решение уравнения

1)
$$u_{xx} - 2u_{xy} - 3u_{yy} = 0$$
.

2)
$$u_{xx} + 2u_{xy} + u_{yy} + u_x + u_y = 0$$
.

3)
$$3u_{xx} - 5u_{xy} - 2u_{yy} + 3u_x + u_y = 2$$
.

4)
$$u_{xy} + 2u_x + 3u_y + 6u = 0$$
.

5)
$$u_{xx}^{xy} - 4u_{xy} + 4u_{yy} + u_x - 2u_y = 0$$

6)
$$x^2 u_{xx} - 2xyu_{xy} + y^2 u_{yy} + xu_x + yu_y = 0$$
.

7)
$$u_{xx} - 2\sin x \cdot u_{xy} - \cos^2 x \cdot u_{yy} - \cos x \cdot u_y = 0$$
.

8)
$$xu_{xx} - yu_{yy} + \frac{1}{2}(u_x - u_y) = 0$$
 $(x > 0, y > 0)$.

9)
$$x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0.$$

10)
$$u_{xx} + 2u_{xy} + u_{yy} + u_x + u_y = 0.$$

11)
$$u_{xx}^{xx} - 2u_{xy}^{xy} + u_{yy}^{yy} + u_{x}^{x} - u_{y}^{y} = 0.$$

12)
$$u_{xy} - 2u_x - 3u_y + 6u = 2e^{x+y}$$
.

13)
$$x^2 u_{xx} - y^2 u_{yy} - 2y u_y = 0.$$

14)
$$u_{xx} - 2u_{xy} - 3u_{yy} = 0.$$

15) $u_{xy} + u_x + 2u_y + 2u = 0.$

15)
$$u_{xy} + u_x + 2u_y + 2u = 0$$

16)
$$u_{xx}^{xy} + 6u_{xy}^{x} + 9u_{yy} + u_{x} + 3u_{y} = 0.$$

17)
$$u_{xx} - yu_{yy} - \frac{1}{2}u_y = 0$$
 $(y > 0)$.
18) $u_{xy} + 3u_x + u_y + 3u = 0$.

18)
$$u_{xy} + 3u_x + u_y + 3u = 0$$
.

19)
$$u_{xx} + xyu_{yy} - \frac{1}{2x}u_x + \frac{x}{2}u_y = 0$$
 $(x < 0, y > 0).$
20) $u_{xx} + 8u_{xy} + 16u_{yy} + u_x + 4u_y = 0.$

20)
$$u_{xx} + 8u_{xy} + 16\overline{u}_{yy} + u_x^2 + 4u_y = 0.$$

21)
$$3u_{xx} - 5u_{xy} - 2u_{yy} + 3u_x + u_y = 2.$$

22)
$$u_{xx} - 6u_{xy} + 9u_{yy} + u_x - 3u_y = 0.$$

23)
$$u_{xx} - 2u_{xy} - 3u_{yy} = 0$$
.

24)
$$u_{xx} - 2u_{xy} + u_{yy} + u_x - u_y = 0.$$

25)
$$x^2 u_{xx} - 2xy u_{xy} + y^2 u_{yy} + xu_x + yu_y = 0.$$

4. Задачи математической физики

Вариант 1

- 1. Однородная струна длиной l натянута между точками x = 0 и x = l. В точке x_0 струна оттягивается на расстояние h от положения равновесия и в момент t = 0 отпускается без начальной скорости. Определить отклонение u(x,t) струны от положения равновесия в любой момент времени.
- 2. На одном конце стержня x = 0 поддерживается температура тающего льда, а на другом x = l происходит конвективный теплообмен со средой нулевой температуры. Найти распределение температуры u(x,t) в любой момент времени, если начальное распределение задано функцией $u(x,0) = 10^{0}$, а боковая поверхность стержня теплоизолирована.
- 3. Найти закон свободных колебаний круглой мембраны радиуса R, если в начальный момент времени отклонение от положения равновесия равнялось $\frac{1}{100} J_0(\mu_1 \rho)$, где $\mu_1 R$ первый положительный корень бесселевой функции J_0 . Начальная скорость равна нулю. Вдоль контура мембрана закреплена.
- 4. Найти закон выравнивания заданного осесимметричного начального распределения температуры $f(\rho)$ в бесконечном цилиндре радиуса R, боковая поверхность которого не пропускает тепла.
- 5. Решить задачу: $\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x + \left(t^2 1\right) \cdot J_0\left(\mu_1 x\right), \\ \left|u\right|_{x=0} \left|<\infty, u\right|_{x=1} = u\right|_{t=0} = u_t \Big|_{t=0} = 0, \end{cases}$

где μ_1 – корень уравнения $J_0(\mu) = 0$.

- 6. Решить задачу: $\begin{cases} u_t = x \ u_{xx} + (2-x) \ u_x + x, \\ \left| u \right|_{x=0} \right| < \infty, \quad u \right|_{t=0} = 0, \quad 0 < x < \infty.$
- 7. Дан однородный шар радиуса R с центром в начале координат. Найти температуру шара, если на поверхности шара происходит теплообмен со средой имеющей температуру 3° ; в начальный момент времени температура шара была 5° .
- 8. Найти распределение потенциала электростатического поля u(x,y) внутри прямоугольника 0 < x < a, 0 < y < b, если потенциал вдоль стороны этого прямоугольника x = 0 равен V_0 , а три другие стороны прямоугольника заземлены. Внутри прямоугольника зарядов нет.
- 9. Найти функцию, гармоническую внутри шара радиуса R, если

$$\left(u+u_r\right)\Big|_{r=R}=1+\cos^2\theta$$
.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге, если

$$u \mid_{\rho=R} = 0$$
.

- 1. Концы струны закреплены жестко, а начальное отклонение имеет форму квадратичной параболы, симметричной относительно перпендикуляра к середине струны. Найти колебания струны, если начальные скорости равны нулю, а длина струны равна *l*.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные постоянной начальной скоростью u_0 точек мембраны.
- 3. Найти закон остывания однородного стержня, имеющего длину l, если на левом конце стержня (x=0) поддерживается нулевая температура, а правый конец стержня (x=l) теплоизолирован. Начальная температура точек стержня

$$u(x,0) = \begin{cases} 0, & 0 \le x \le l/2, \\ u_0, & l/2 < x \le l. \end{cases}$$

Боковая поверхность стержня теплоизолирована.

- 4. Бесконечный цилиндр радиуса R, нагретый до начальной температуры u_0 , охлаждается, излучая тепло в окружающую среду по закону Ньютона. Найти закон остывания цилиндра, если температура среды равна нулю.
- 5. Решить задачу

$$\begin{cases} u_{t} = u_{xx} - 2u_{x} + x + 2t, \\ u|_{t=0} = e^{x} \cdot \sin(\pi x), \quad u|_{x=0} = 0, \quad u|_{x=1} = t. \end{cases}$$

6. Решить задачу

$$\begin{cases} u_{tt} = u_{xx} - 2xu_x + x^2, & -\infty < x < \infty, \\ u\big|_{t=0} = u_t\big|_{t=0} = 0. \end{cases}$$

- 7. Дан однородный круговой цилиндр радиуса R. Найти распределение температуры внутри цилиндра, если поверхность цилиндра поддерживается при температуре 10° , а начальная температура равна нулю.
- 8. Найти стационарную температуру $u(\rho, z)$ внутри цилиндрического бруска единичного радиуса и высоты, если основания цилиндра теплоизолированы, а боковая поверхность имеет температуру u(R, z) = z.
- 9. Найти функцию, гармоническую внутри единичной сферы, такую, что

$$u\Big|_{r=1} = \left(\sin\theta + \sin 2\theta\right) \cdot \sin\left(\varphi + \frac{\pi}{6}\right).$$

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(0, y) = u(1, y) = 0$$
, $u(x,1) = u(x,3) = 0$.

1. Найти продольные колебания стержня, один конец которого x = 0 закреплен жестко, а другой x = l свободен, если

$$u(x,0) = k x$$
, $u_t(x,0) = 0$ при $0 \le x \le l$.

- 2. Найти закон свободных колебаний круглой мембраны радиуса R, закрепленной вдоль контура, если все точки мембраны в начальный момент получили скорость, равную a (где a постоянная уравнения колебания мембраны). Начальное отклонение равно нулю.
- 3. Дан шар радиуса R с начальным распределением температуры $u(x,0) = u_0$. В начальный момент времени поверхность шара охлаждается до нулевой температуры, которая поддерживается на протяжении всего процесса охлаждения. Найти распределение температуры внутри шара в любой момент времени.
- 4. Найти распределение температуры в бесконечном однородном круглом цилиндре радиуса R, если начальная температура цилиндра равна ρ^2 , а на поверхности цилиндра происходит конвективный теплообмен со средой, имеющей нулевую температуру.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x} u_x - \frac{1}{x^2} u + e^t \cdot J_1(\mu_2 x), \\ \left| u \right|_{x=0} \left| < \infty, \quad u \right|_{x=1} = 0, \quad u_{t=0} = 0, \quad u_t \right|_{t=0} = 0, \end{cases}$$

где μ_2 – корень уравнения $J_1(\mu) = 0$.

$$\begin{cases} u_t = u_{xx} - x^2 u + e^{-x^2/2}, \\ u\big|_{x=\pm\infty} = 0, \quad u_{t=0} = 0. \end{cases}$$

- 7. Найти колебания струны, закрепленной на конце x = 0 и подверженной действию возмущающей силы на конце x = l, которая вызывает смещение, равное $0.1 \sin 2t$. В момент t = 0 смещения и скорости точек струны равны нулю.
- 8. Цилиндр, радиус основания которого R и высота h, имеет теплоизолированные основания, а температура боковой поверхности представляет данную функцию g(z). Найти стационарную температуру внутренних точек цилиндра.
- 9. Найти функцию, гармоническую внутри сферического слоя 1 < r < 2, такую, что $u\big|_{r=1} = 3\sin 2\varphi \cdot \sin^2\theta$, $u\big|_{r=2} = 3\cos\theta$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(0,y) = u(l,y) = 0$$
, $u_v(x,a) = u_v(x,b) = 0$.

- 1. Стержень с жестко закрепленным концом x = 0 находится в состоянии равновесия под действием продольной силы $F_0 = const$, приложенной к концу x = l. В момент t = 0 действие силы мгновенно прекращается. Найти колебания стержня, если начальные скорости равны нулю.
- 2. Найти поперечные колебания круглой мембраны радиуса R с закреплённым краем, вызванные радиально симметричным начальным распределением отклонений, считая, что окружающая среда оказывает сопротивление, пропорциональное скорости (коэффициент пропорциональности равен $2v^2$, $v^2 < a\mu_k$, μ_k положительные корни уравнения $J_0(\mu R) = 0$, a константа из уравнения колебаний).
- 3. Найти закон выравнивания начальной температуры u(x,0) = Ax(l-x) в пластине, грани которой x=0, x=l теплоизолированы.
- 4. Найти распределение температуры в бесконечном цилиндре радиуса R, если начальное распределение температуры $u(\rho,0) = \rho^2$, а на боковой поверхности цилиндра происходит теплообмен со средой нулевой температуры.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x, & x \in (0; 1), \\ \left| u(0,t) \right| < \infty, & u \big|_{x=1} = t - 1, & u \big|_{t=0} = J_0(\mu_1 x) - 1, & u_t \big|_{t=0} = 1, \end{cases}$$

где μ_1 – корень уравнения $J_0(\mu) = 0$.

$$\begin{cases} u_t = x u_{xx} + (1-x)u_x + x^2 - 2x, \\ |u|_{x=0} | < \infty, \quad u|_{t=0} = 0. \end{cases}$$

- 7. На однородную струну плотности γ , закрепленную на концах x=0, x=1, действует внешняя сила, плотность которой $P=\gamma \cdot \sin t$. Найти смещения точек струны, если начальные отклонения и начальные скорости отсутствуют.
- 8. Найти стационарную температуру внутренних точек цилиндра с радиусом основания R и высотой h=1, если основания цилиндра теплоизолированы, а температура боковой поверхности равна z.
- 9. Найти функцию u, гармоническую внутри шара радиуса R с центром в начале координат, такую, что $u|_{r=R} = \cos^2 \theta$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге, если $u_{\rho}\big|_{\rho=R}=0$.

- 1. Найти закон свободных колебаний струны, если в начальный момент времени струне была придана форма кривой $u = \frac{l}{100} \sin \frac{\pi x}{2l}$ и затем струна была отпущена без начальной скорости. Струна закреплена в левом конце x = 0, а правый x = l может свободно перемещаться так, что касательная на правом конце все время остается горизонтальной.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные начальным от-клонением $f(\rho) = A(R^2 \rho^2)$.
- 3. Найти закон распределения температуры внутри стержня длины l, лежащего на отрезке [0, l], если в начальный момент температура внутри стержня была распределена следующим образом:

$$u(x,0) = \begin{cases} \frac{x}{l}u_0, & 0 \le x \le l/2, \\ \frac{l-x}{l}u_0, & l/2 \le x \le l, \end{cases}$$

где $u_0 = const$. На концах стержня поддерживается нулевая температура.

- 4. Найти распределение температуры в бесконечном однородном круглом цилиндре радиуса R, если начальная температура цилиндра равна $A \rho^2$. Поверхность цилиндра теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_t = u_{xx} + 4u + x^2 - 2t - 4x^2t + 2\cos^2 x, \\ u_x \Big|_{x=0} = 0, \quad u_x \Big|_{x=\pi} = 2\pi t, \quad u \Big|_{t=0} = 0. \end{cases}$$

$$\begin{cases} u_{tt} = x u_{xx} + (1-x) u_x + x, \\ |u|_{x=0} | < \infty, \quad u|_{t=0} = 0, \quad u_t|_{t=0} = 0. \end{cases}$$

- 7. Найти распределение температуры в однородном стержне с теплоизолированной боковой поверхностью, если левый конец стержня поддерживается при температуре 7° , а на правый подается постоянный тепловой поток плотностью q. Начальная температура равна нулю.
- 8. Боковая поверхность цилиндра радиуса R и высотой h покрыта непроницаемым для тепла чехлом. Температура нижнего основания поддерживается постоянной и равной нулю, а температура верхнего основания есть функция от ρ . Найти стационарную температуру внутренних точек цилиндра.
- 9. Найти функцию, гармоническую внутри сферы радиуса R с центром в начале координат, такую, что $u\Big|_{r=R} = \sin^2\theta \cdot \cos\left(2\varphi \frac{\pi}{4}\right) + \sin\theta \cdot \sin\varphi$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(0,y) = u_x(1,y) = 0$$
, $u_y(x,1) = u(x,4) = 0$.

- 1. Один конец стержня x = l закреплен упруго, а к другому x = 0 приложена продольная сила $F_0 = const$, под действием которой стержень находится в равновесии. Найти колебания стержня после того, как в начальный момент времени сила мгновенно исчезает, если начальные скорости равны нулю.
- 2. Найти закон свободных колебаний круглой мембраны радиуса R, если в начальный момент отклонение в каждой точке определялось равенством $u(\rho,0)=0.1J_0(\mu_1\rho)$, где μ_1 первый положительный корень уравнения $J_0(\mu R)=0$. Начальная скорость равна нулю. Вдоль контура мембрана закреплена.
- 3. Найти закон распределения температуры внутри стержня длины l, если на конце x=0 происходит конвективный теплообмен со средой нулевой температуры, а на конце x=l поддерживается температура тающего льда. Начальная температура $u(x,0)=T_0=const$.
- 4. Найти закон выравнивания заданного начального распределения $u(\rho,0) = 0.3 \, \rho^2 4.8$ температуры в бесконечном цилиндре радиуса R, если на поверхности поддерживается нулевая температура.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = x \ u_{xx} + (2-x) \ u_x + x^2 - 6x, \\ |u|_{x=0} | < \infty, \quad u|_{t=0} = u_t |_{t=0} = 0. \end{cases}$$

$$\begin{cases} u_{tt} = u_{xx} + 10u + 2\sin 2x \cdot \cos x, \\ u\big|_{x=0} = u_x\big|_{x=\frac{\pi}{2}} = 0, \quad u\big|_{t=0} = u_t\big|_{t=0} = 0. \end{cases}$$

- 7. Дан тонкий однородный стержень, начальная температура которого равна нулю. Левый конец стержня поддерживается при постоянной температуре 3^{0} , а на правый конец подается постоянный тепловой поток плотности q. Найти распределение температуры в стержне, если боковая поверхность теплоизолирована.
- 8. Найти стационарную температуру $u(\rho, z)$ внутренних точек цилиндра радиуса R и высоты h, если основания цилиндра теплоизолированы, а температура боковой поверхности изменяется по закону $u(R, z) = A \cdot \cos \frac{\pi z}{h}$.
- 9. Найти функцию, гармоническую внутри шарового слоя 1 < r < 2, такую, что $u \mid_{r=1} = 9 \cos 2\theta$, $u \mid_{r=2} = 3 \left(1 7 \cos^2 \theta\right)$.
- 10. Найти ортонормированную систему собственных u(x,y) функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если $u(x,1)=u(x,2)=0, \quad u_x(0,y)=u_x(1,y)=0$.

1. Найти продольные колебания стержня, один конец которого x = 0 закреплен жестко, а другой x = 10 свободен, при начальных условиях:

$$u(x,0) = 0.1x$$
, $u_t|_{t=0} = 0$.

- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебание мембраны, вызванной постоянной начальной скоростью $v_0 = 0,2$ точек мембраны.
- 3. Найти распределение температуры в неограниченной пластине толщиной l, если на поверхностях пластины поддерживается нулевая температура, а начальное распределение температуры по толщине пластины $u(x,0) = A \cdot \sin \frac{3\pi}{l} x$.
- 4. Найти закон выравнивания заданного начального распределения температуры $u(\rho,0)=100^0$ в бесконечном цилиндре радиуса R, если на боковой поверхности происходит теплообмен со средой нулевой температуры.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{4u}{x^2} + (t^2 + 1) \cdot J_2(\mu_1 x), \\ |u|_{x=0} |<\infty, u'_x|_{x=1} = u|_{t=0} = u_t|_{t=0} = 0, \end{cases}$$

где μ_1 – корень уравнения $J_2'(\mu) = 0$.

6. Решить задачу:

$$\begin{cases} u_t = u_{xx} - x^2 u + e^{-x^2/2}, \\ u\big|_{x = \pm \infty} = 0, \quad u\big|_{t = 0} = 0. \end{cases}$$

- 7. Дан тонкий однородный стержень, боковая поверхность которого теплоизолирована. Найти распределение температуры в стержне, если конец x=0 поддерживается при нулевой температуре, а на конец x=1 подается постоянный тепловой поток плотностью q. Начальная температура стержня равна нулю.
- 8. Найти стационарное распределение температуры внутри цилиндра радиуса R и высоты h, если к верхнему основанию подводится постоянный тепловой поток плотностью q, нижнее основание поддерживается при нулевой температуре, а температура боковой поверхности равна нулю.
- 9. Найти функцию, гармоническую вне сферы радиуса *R* с центром в начале координат, такую, что

$$u\big|_{r=R} = \sin^3\theta \cdot \cos\theta \cdot \cos\left(3\varphi + \frac{\pi}{4}\right).$$

10. Найти ортонормированную систему собственных функций u(x,y) задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(x,1) = u(x,2) = 0$$
, $u_x(0,y) = u_x(1,y) = 0$.

- 1. Концы струны закреплены жестко, начальное отклонение равно нулю. Найти колебание струны, если начальные скорости $u_t(x,0) = \sin \frac{2\pi}{l} x$, а длина струны равна l.
- 2. Найти поперечные колебания круглой мембраны радиуса R=1 с закрепленным краем, вызванные радиально симметричным начальным распределением отклонений, когда окружающая среда оказывает сопротивление, пропорциональное скорости. Коэффициент пропорциональности равен $2v^2$ ($v^2 > a \lambda_k$, где λ_k положительные корни уравнения $J_0(\lambda) = 0$). Начальные скорости отсутствуют.
- 3. Найти распределение температуры в стержне длины l с теплоизолированной боковой поверхностью, если на конце x = l поддерживается нулевая температура, конец x = 0 теплоизолирован, а начальная температура равна $u_0 = l x$.
- 4. Найти концентрацию в растворе, помещенном внутрь цилиндрической трубки радиуса R=2 с непроницаемыми стенками, если начальное распределение концентрации задано равенством $f(\rho) = 0.5 \rho^2 + 1$.
- 5. Решить задачу:

$$\begin{cases} u_t = u_{xx} + \frac{1}{x} u_x - \frac{1}{x^2} u + 3e^t J_1(\mu_2 x), \\ \left| u \right|_{x=0} \left| < \infty, \quad u_x \right|_{x=1} = u \mid_{t=0} = 0, \end{cases}$$
 где μ_2 — корень уравнения $J_1'(\mu) = 0$.

$$\begin{cases} u_{tt} = u_{xx} \left(1 - x^2 \right) - 2xu_x + 3x^2, \\ \left| u \right|_{x=\pm 1} \left| < \infty, \quad u \right|_{t=0} = 0, \quad u_t \right|_{t=0} = x\sqrt{2}. \end{cases}$$

- 7. Дан однородный шар единичного радиуса с центром в начале координат. На поверхности шара происходит конвективный теплообмен со средой, имеющей температуру 10°. Начальная температура шара равна 2°. Определить температуру внутри шара в любой момент времени.
- 8. Найти стационарное распределение температуры внутри твердого тела, имеющего форму цилиндра с радиусом основания R и высотой h, если к нижнему основанию z=0 подводится постоянный тепловой поток плотности q, а боковая поверхность $\rho=R$ и верхнее основание z=h поддерживаются при нулевой температуре.
- 9. Найти функцию, гармоническую вне шара радиуса R , такую, что $u_r \Big|_{r=R} = \sin^2 \theta \; .$
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(0, y) = u_x(2, y) = 0, \quad u(x,1) = u(x,2) = 0.$$

- 1. Найти колебания струны, если один конец x = 0 закреплен жестко, а второй x = l свободен. Начальное отклонение $u(x,0) = \sin \frac{5\pi x}{2l}$, начальные скорости $u_t(x,0) = \sin \frac{\pi x}{2l}$.
- 2. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{1}{x^2}u, & (0 < x < 1), \\ \left| u \right|_{x=0} \left| < \infty, u \right|_{x=1} = 0, u \right|_{t=0} = J_1(\mu_5 x), u_t \right|_{t=0} = J_1(\mu_3 x), \end{cases}$$

где μ_3 , μ_5 – два различных положительных корня уравнения $J_1(\mu) = 0$.

- 3. Найти распределение температуры в стержне длины l, если на его концах поддерживается нулевая температура, а начальное распределение температуры равно u(x,0) = Ax.
- 4. Найти концентрацию в растворе, помещенном внутрь цилиндрической трубки $0 \le \rho \le b$ с непроницаемой стенкой, если начальное распределение концентрации задано равенством

$$u\big|_{t=0} = \begin{cases} u_0, & 0 \le \rho \le c, \\ 0, & c < \rho \le b. \end{cases}$$

5. Решить задачу:

$$\begin{cases} u_t = u_{xx} + u - x + 2\sin 2x \cdot \cos x, \\ u\big|_{x=0} = 0, \quad u_x\big|_{x=\frac{\pi}{2}} = 1, \quad u_{t=0} = x. \end{cases}$$

$$\begin{cases} u_{tt} = u_{xx} (1 - x^2) - 2xu_x + 5x^3 - 2x, \\ |u|_{x=\pm 1}| < \infty, \quad u|_{t=0} = 0, \quad u_t|_{t=0} = 0. \end{cases}$$

- 7. Исследовать радиальное распределение тепла в бесконечном круговом цилиндре радиуса *R*, боковая поверхность которого поддерживается при постоянной температуре 8 градусов. Начальная температура внутри цилиндра равна нулю.
- 8. Найти стационарную температуру $u(\rho, z)$ внутренних точек цилиндра радиусом R и высотой h, если температура верхнего и нижнего оснований равна нулю, а температура боковой поверхности изменяется по закону $u(\rho, z) = z(h-z)$.
- 9. Найти функцию, гармоническую внутри единичной сферы такую, что $u \big|_{r=1} = \sin\theta \cdot (\sin\varphi + \sin\theta).$
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(2,y) = u_x(5,y) = u(x,0) = u_y(x,2) = 0.$$

1. Найти колебания струны, если один конец x = 0 закреплен жестко, а второй x = l свободен. Начальное отклонение u(x,0) = x, начальные скорости

$$u_t(x,0) = \sin\frac{\pi x}{2l} + \sin\frac{3\pi x}{2l}.$$

2. Решить смешанную задачу

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{9}{x^2}u, & (0 < x < 1), \\ \left| u \right|_{x=0} \left| < \infty, u \right|_{x=1} = 0, u \right|_{t=0} = J_3(\mu_1 x), u_t \right|_{t=0} = J_3(\mu_1 x), \end{cases}$$

где μ_1 - положительный корень уравнения $J_3(\mu) = 0$.

- 3. Найти закон остывания однородного изотропного шара радиуса R, если в начальный момент времени температура в каждой точке есть функция от r (r– расстояние от точки до центра шара). Через поверхность шара про-исходит свободный теплообмен с окружающей средой нулевой температуры. Коэффициент теплообмена между шаром и окружающей средой равен h.
- 4. Найти закон выравнивания заданного осесимметричного начального распределения температуры $u(\rho,0) = \rho^2$ в бесконечном цилиндре радиуса R, боковая поверхность которого теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_t = u_{xx} + u + xt(2-t) + 2\cos t, \\ u_x \Big|_{x=\pi} = u_x \Big|_{x=0} = t^2, \ u \Big|_{t=0} = \cos 2x. \end{cases}$$

$$\begin{cases} u_{tt} = \left(1 - x^2\right) u_{xx} - 2xu_x - \frac{1}{1 - x^2} u + t^2 \sqrt{1 - x^2}, \\ \left| u \right|_{x = \pm 1} \right| < \infty, \quad u \left|_{t = 0} = u_t \right|_{t = 0} = 0. \end{cases}$$

- 7. Решить задачу о колебаниях однородной круглой мембраны радиуса R, закрепленной по краю, если эти колебания вызваны равномерно распределенным давлением $P = 3 \sin t$, приложенным к одной стороне мембраны.
- 8. Найти распределение потенциала электростатического поля u(x,y) внутри коробки прямоугольного сечения, одна грань которой x=a имеет потенциал V_0 , а три другие грани $x=0,\ y=0,\ y=b$ заземлены.
- 9. Найти функцию, гармоническую внутри сферического слоя 1 < r < 2, такую, что $u\big|_{r=1} = \sin\theta \cdot \cos\varphi$, $u\big|_{r=2} = \cos\theta$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге радиуса $\it R$, если

$$u \mid_{\rho=R} = 0$$
.

- 1. Один конец струны x=0 свободен, а второй конец x=l закреплён жёстко. Найти колебания струны, если начальное отклонение $u(x,0) = \cos \frac{\pi x}{2l}$, начальные скорости $u_t(x,0) = \cos \frac{3\pi x}{2l} + \cos \frac{5\pi x}{2l}$.
- 2. Однородная круглая мембрана радиуса R в начальный момент времени t=0 имеет форму параболоида вращения $u(\rho,0)=b\left(1-\rho^2/R^2\right)$. Начальные скорости равны нулю, контур мембраны жестко закреплен. Найти поперечные колебания мембраны.
- 3. Найти распределение температуры в стержне длины l, если один его конец (x=0) теплоизолирован, на другом его конце (x=l) происходит теплообмен по закону Ньютона со средой нулевой температуры. Боковая поверхность теплоизолирована, начальная температура $u(x,0) = u_0 = const$.
- 4. Цилиндр радиуса R нагрет до температуры T_0 и охлаждается таким образом, что температура поверхности цилиндра, начиная с момента t=0, поддерживается равной нулю. Найти закон охлаждения цилиндра, считая, что распределение температуры во всех поперечных сечениях одинаково.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{4}{x^2}u + \sin t \cdot J_2(\mu_1 x), \\ |u|_{x=0}| < \infty, \quad u_t|_{t=0} = u|_{t=0} = u|_{x=1} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{t} = (1 - x^{2}) u_{xx} - 2x u_{x} - \frac{4}{1 - x^{2}} u + 1 - x^{2}, \\ \left| u \right|_{x = \pm 1} \right| < \infty, \quad u \right|_{t = 0} = 9x(1 - x^{2}). \end{cases}$$

- 7. Найти температуру однородного стержня, левый конец которого и боковая поверхность теплоизолированы, а правый конец поддерживается при температуре 8 градусов. Начальная температура стержня равна нулю.
- 8. Найти стационарное распределение температуры твердого тела, имеющего форму цилиндра радиуса R и высоты h, если основания цилиндра теплоизолированы, а температура боковой поверхности изменяется по закону $u(R,z) = \cos \frac{2\pi z}{h}$.
- 9. Найти функцию, гармоническую внутри сферы единичного радиуса с центром в начале координат, такую, что

$$u\Big|_{r=1} = \sin\left(3\varphi + \frac{\pi}{4}\right) \cdot \sin^3\theta$$
.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_{y}(x,0) = u_{y}(x,l) = u(a,y) = u(b,y) = 0.$$

- 1. Найти поперечные колебания струны длины l, если ее конец x=0 закреплен жестко, конец x=l свободен, начальное отклонение u(x,0)=x, начальная скорость $u_t(x,0)=u_0$.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебание мембраны, вызванное постоянной начальной скоростью u_0 точек мембраны.
- 3. Определить температуру в каждой точке стержня длиной l с теплоизолированной боковой поверхностью, если на концах стержня поддерживается нулевая температура, а начальная температура $u(x,0) = 50 \sin \frac{2\pi x}{l}$.
- 4. Цилиндр радиуса R нагрет до температуры T_0 и охлаждается с поверхности таким образом, что ее температура, начиная с момента t=0, поддерживается равной нулю. Найти закон охлаждения цилиндра, считая, что распределение температуры во всех поперечных сечениях одинаково.
- 5. Решить задачу:

$$\begin{cases} u_t - u_{xx} + 2u_x - u = e^x \sin x - t, \\ u\big|_{x=0} = u\big|_{x=\pi} = 1 + t, \ u\big|_{t=0} = 1 + e^x \sin 2x. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} = (1 - x^2) u_{xx} - 2xu_x + 3x^2 + x, \\ |u|_{x=\pm 1} | < \infty, \quad u|_{t=0} = u_t|_{t=0} = 0. \end{cases}$$

- 7. Дана неограниченная пластина толщиной 2R при температуре, равной нулю. В пластине, начиная с момента t=0, действует источник тепла с постоянной плотностью q. Найти распределение температуры по толщине пластины, если ее грани поддерживаются при нулевой температуре.
- 8. Найти стационарную температуру внутренних точек цилиндрического бруска радиуса R и высотой h, если температура нижнего основания равна нулю, боковая поверхность свободно охлаждается в среде нулевой температуры, а температура верхнего основания постоянна и равна u_0 .
- 9. Найти функцию, гармоническую внутри единичного шара с центром в начале координат, если

$$u\Big|_{r=1} = \sin^2\theta$$
.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге радиуса *R*, если

$$u_{\rho} \Big|_{\rho=R} = 0$$
.

- 1. Найти колебания струны, если один конец x = 0 свободен, а другой конец x = l закреплен упруго, начальное отклонение равно нулю, начальные скорости $u_t(x,0) = 1$.
- 2. Однородная круглая мембрана радиуса R в начальный момент времени t=0 имеет форму параболоида вращения: $u(\rho,0) = \frac{R}{10} \left(1 \rho^2 / R^2\right)$. Начальные скорости равны нулю, контур мембраны жестко закреплен. Найти смещение точек мембраны в момент времени t>0.
- 3. Найти распределение температуры в стержне $0 \le x \le l$ с теплоизолированной боковой поверхностью, если температура его концов поддерживается равной нулю, а начальная температура $u = u_0 = const$.
- 4. Бесконечный цилиндр радиуса R, нагретый до начальной температуры T_0 , охлаждается, излучая тепло в окружающую среду по закону Ньютона. Найти закон остывания цилиндра, если коэффициент теплообмена h, а температура среды равна нулю.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} - 2xu_x + 5x^2, \\ u_t \Big|_{t=0} = u \Big|_{t=0} = 0. \end{cases} x \in (-\infty, +\infty)$$

6. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{1}{x^2}u + t \cdot J_1(\mu_1 x), \\ \left| u \big|_{x=0} \right| < \infty, \quad u_x \big|_{x=1} = 0, \quad u \big|_{t=0} = 2J_1(\mu_2 x), \quad u_t \big|_{t=0} = 0, \end{cases}$$

где μ_1 , μ_2 — корни уравнения $J'_1(\mu) = 0$.

- 7. Дан тонкий однородный стержень с теплоизолированной боковой поверхностью. Найти распределение температуры в стержне, если левый конец поддерживается при температуре 4 градуса, а на правый подается постоянный тепловой поток плотностью q. Начальная температура стержня равна нулю.
- 8. Найти распределение потенциала электростатического поля внутри прямоугольника, если на его границе потенциал принимает следующие значения:

$$\begin{cases} u \big|_{x=0} = A \cdot \sin \pi y, & u \big|_{x=1} = 0, \\ u \big|_{y=0} = B \cdot \sin \pi x, & u \big|_{y=1} = 0. \end{cases}$$

- 9. Найти функцию, гармоническую внутри сферического слоя 1 < r < 2, такую, что $u\big|_{r=1} = 7\sin\theta\cdot\sin\varphi$, $u\big|_{r=2} = 0$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге радиуса R, если $u \mid_{a=R} = 0$.

- 1. Найти отклонения точек u(x,t) однородной струны при t>0, если ее концы x=0, x=l закреплены жестко, начальное отклонение равно $u(x,0)=A\cdot\sin\frac{\pi\,x}{l}$ при $0\le x\le l$ и начальные скорости равны нулю.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные постоянной начальной скоростью v_0 точек мембраны.
- 3. Найти распределение температуры в стержне $0 \le x \le l$ с теплоизолированной боковой поверхностью, если начальная температура стержня $u(x,0) = T_0 = const$, левый конец x = 0 теплоизолирован, а на правом конце стержня x = l происходит теплообмен по закону Ньютона со средой, температура которой равна нулю.
- 4. Бесконечный цилиндр радиуса R имеет начальное распределение температуры $f(\rho) = 2 \rho^2$, где ρ расстояние от произвольной точки цилиндра до его оси симметрии. Найти распределение температуры в цилиндре в произвольный момент времени, если боковая поверхность цилиндра теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = a^2 \Delta u + t \cdot \sin 3y \cdot \cos 4x, \\ u_x \Big|_{x=0} = u_x \Big|_{x=\pi} = u \Big|_{y=0} = u \Big|_{y=\pi} = 0, \quad u_t \Big|_{t=0} = u \Big|_{t=0} = 0. \end{cases}$$

$$\begin{cases} u_{t} = x u_{xx} + (1 - x) u_{x} + 2 x, \\ \left| u \right|_{x=0} \right| < \infty, \quad u \right|_{t=0} = 0.$$

- 7. Дан неограниченный круговой цилиндр радиуса R. Найти распределение температуры внутри цилиндра при t>0, если с поверхности цилиндра происходит лучеиспускание в окружающую среду, температура которой равна u_0 , а начальная температура равна нулю.
- 8. Найти распределение потенциала электростатического поля u(x,y) внутри прямоугольника 0 < x < a, 0 < y < b, если потенциал вдоль стороны этого прямоугольника x = 0 равен V_0 , а три другие стороны заземлены. Внутри прямоугольника электрических зарядов нет.
- 9. Найти функцию, гармоническую внутри единичной сферы, такую, что $u\,\big|_{r=1} = \sin\theta \cdot \big(\sin\varphi + \sin\theta\big).$
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в квадрате, если

$$u_x(0,y) = u(1,y) = u(x,1) = u_y(x,2) = 0$$
.

- 1. Однородная струна с жестко закрепленными концами x = 0, x = l в начальный момент времени t = 0 оттянута в точке x = l/2 на заданную величину h, затем отпущена без начальной скорости. Найти отклонения точек u(x,t) однородной конечной струны при t > 0.
- 2. Найти поперечные колебания круглой мембраны радиуса R с закрепленным краем, вызванные радиально симметричным начальным распределением $f(\rho)$ отклонений, считая, что окружающая среда не оказывает сопротивления. Начальные скорости отсутствуют.
- 3. Начальная температура стержня $u(x,0) = \sin \frac{\pi x}{2l}$. Найти температуру стержня, если на левом конце x = 0 поддерживается нулевая температура, правый конец x = l теплоизолирован, а на боковой поверхности стержня происходит конвективный теплообмен со средой нулевой температуры.
- 4. Найти закон выравнивания заданного осесимметричного начального распределения температуры $u(\rho,0) = 0.2 \, \rho^2 0.3$ в бесконечном цилиндре радиуса R, боковая поверхность которого теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_t = u_{xx} - x^2 u + t \cdot e^{-x^2/2}, \\ u\big|_{x = \pm \infty} = 0, \quad u_{t=0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} - u_{xx} + 2u_t = 4x + 8e^t \cos x, \\ u_x \Big|_{x=0} = 2t, \quad u\Big|_{x=\pi/2} = \pi t, \quad u\Big|_{t=0} = \cos x, \quad u_t \Big|_{t=0} = 2x. \end{cases}$$

- 7. Решить задачу о колебаниях однородной круглой мембраны радиуса R, закрепленной по краю, если эти колебания вызваны равномерно распределенным давлением $P = 2\sin 3t$, приложенным к одной стороне мембраны.
- 8. Найти распределение потенциала электростатического поля внутри коробки прямоугольного сечения $0 < x < \pi$, $0 < y < \pi$, грань которой $x = \pi$ имеет потенциал u_0 , а три другие заземлены.
- 9. Найти функцию, гармоническую вне шара радиуса R, такую, что

$$u_r \Big|_{r=R} = \sin^2 \theta$$
.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_y(x,0) = u(x,4) = u(2,y) = u(1,y) = 0.$$

- 1. Найти продольные колебания стержня, один конец которого x = 0 закреплен жестко, другой конец x = l свободен, если начальное смещение точек стержня u(x,0) = 0.1x, а начальные скорости точек стержня равны нулю.
- 2. Найти закон свободных колебаний круглой мембраны радиуса R, если в начальный момент отклонение в каждой точке определялось равенством $u(\rho, \varphi) = 0.1 J_0(\mu_1 \rho)$, где $\mu_1 R$ первый положительный нуль бесселевой функции J_0 . Начальная скорость равна нулю. Вдоль контура мембрана закреплена.
- 3. Пластина толщины 2a нагрета до температуры u_0 . Начиная с момента времени t=0, ее грани поддерживаются при температуре, равной нулю. Найти распределение u(x,t) температуры в пластине.
- 4. Найти распределение температуры в бесконечном цилиндре радиуса R, если начальная температура $u(\rho,0)=u_0$, а на поверхности цилиндра про-исходит конвективный теплообмен со средой нулевой температуры.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} - 2xu_x + 2x - 2, \\ u_t \Big|_{t=0} = u \Big|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{t} = u_{xx} + \frac{1}{x}u_{x} - \frac{4}{x^{2}}u + 2e^{t} \cdot J_{2}(\mu_{2}x), \\ \left| u \right|_{x=0} \left| < \infty, u \right|_{x=1} = 0, u \right|_{t=0} = 0, \end{cases}$$

где μ_2 – корень уравнения $J_2(\mu) = 0$.

- 7. Дан однородный шар радиуса R с центром в начале координат. Найти температуру шара, если на поверхности шара происходит теплообмен со средой температуры 15° , а температура шара в начальный момент времени равна 20° .
- 8. Найти стационарную температуру $u(\rho, z)$ внутренних точек цилиндра с радиусом основания R и высотой h, если температура оснований равна нулю, а температура боковой грани изменяется по закону u(R, z) = 2z.
- 9. Найти функцию, гармоническую внутри шарового слоя 1 < r < 2 такую, что

$$u\big|_{r=1} = 7\sin\theta \cdot \cos\varphi$$
, $u\big|_{r=2} = 7\cos\theta$.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(1, y) = u_x(3, y) = u(x, 2) = u(x, 0) = 0$$
.

- 1. Найти колебания однородной струны с закрепленными концами, если начальное отклонение равно $5\sin\frac{\pi x}{4} + 12\sin 2\pi x$, начальная скорость равна $3\sin\frac{3\pi x}{8} + 14\sin 4\pi x$, длина струны l = 8.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные постоянной скоростью v_0 точек мембраны.
- 3. Найти закон выравнивания заданного начального распределения u(x,0) = f(x) температуры в пластине, грани которой x = 0, x = l не пропускают тепла.
- 4. Бесконечный цилиндр радиуса R с начальным распределением температуры $u(\rho,0) = \rho^2 1$ охлаждается, излучая тепло в окружающую среду нулевой температуры по закону Ньютона. Найти закон остывания цилиндра.
- 5. Решить задачу:

$$\begin{cases} u_t = u_{xx} - 2xu_x + \sinh 3x, \\ u\big|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

y:

$$\begin{cases}
2u_t + u_{tt} = u_{xx} + 8u + 2x(1 - 4t) + \cos 3x, \\
u_x \Big|_{x=0} = t, \quad u \Big|_{x=\frac{\pi}{2}} = \frac{\pi t}{2}, \quad u \Big|_{t=0} = 0, \quad u_t \Big|_{t=0} = x.
\end{cases}$$

- 7. Решить задачу о колебаниях квадратной мембраны $0 < x < \pi$, $0 < y < \pi$, закрепленной на сторонах y = 0, $y = \pi$ и свободной на концах x = 0, $x = \pi$, если на мембрану действует равномерно распределенное давление $p = t \cdot \cos x \cdot \sin 2y$. Начальное отклонение и начальная скорость равны нулю.
- 8. Найти стационарную температуру внутренних точек цилиндра с радиусом основания R и высотой h, если температура нижнего основания и боковой поверхности цилиндра равна нулю, а температура верхнего основания изменяется по закону $u(\rho,h)=3\rho^2$.
- 9. Найти функцию, гармоническую вне единичной сферы с центром в начале координат, такую, что

$$u \mid_{r=1} = \sin^3 \theta \cdot \cos \theta \cdot \cos \left(3\varphi + \frac{\pi}{4} \right).$$

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(0,y) = u(1,y) = u(x,2) = u_y(x,4) = 0$$
.

38

- 1. Найти отклонения точек u(x,t) однородной струны при t>0, если один ее конец x=0 закреплен жестко, другой конец x=l свободен. Начальное отклонение равно $4\sin\frac{3\pi\,x}{2\,l} + 5\sin\frac{9\pi\,x}{2\,l}$, начальная скорость равна $13\,\pi\cdot\sin\frac{15\,\pi x}{2\,l} + 7\pi\cdot\sin\frac{21\pi x}{2\,l}$.
- 2. Найти закон свободных колебаний круглой мембраны радиуса R, закрепленной вдоль контура, если все точки мембраны в начальный момент получили скорость 5a (a- постоянная в уравнении колебания мембраны). Начальное отклонение равно нулю.
- 3. Найти распределение температуры u(x,t) в пластине, если левая грань x = 0 теплоизолирована, правая x = l поддерживается при нулевой температуре, а начальное распределение u(x, 0) = 4(l-x).
- 4. Найти закон выравнивания заданного начального распределения $u(\rho,0) = \rho^2 0.5$ температуры в неограниченном цилиндре радиуса R, если боковая поверхность цилиндра теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_{t} = x u_{xx} + (2-x)u_{x} + x^{2} - 6x, & x > 0, \\ \left| u \right|_{x=0} \left| < \infty, u \right|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

вадачу:
$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x} u_x, \\ \left| u \right|_{x=0} \left| < \infty, \quad u \right|_{x=1} = t-1, \ u \left|_{t=0} = J_0 \left(\mu_2 x \right) - 1, \quad u_t \right|_{t=0} = 1, \end{cases}$$

где μ_2 – корень уравнения $J_0(\mu) = 0$.

- 7. На однородную струну плотностью γ , закрепленную на концах x=0, x=1, действует внешняя сила, плотность которой $P=\gamma\cdot\sin 3t$. Найти смещение точек струны, если начальные отклонения и начальные скорости отсутствуют.
- 8. Найти распределение потенциала электростатического поля u(x,y) внутри прямоугольника 0 < x < a, 0 < y < b, если потенциал вдоль стороны этого прямоугольника x = 0 равен 10 ед., а три другие стороны прямоугольника заземлены. Внутри прямоугольника электрических зарядов нет.
- 9. Найти функцию, гармоническую внутри единичной сферы, такую, что

$$u\big|_{r=1} = \left(\sin\theta + \sin 2\theta\right) \cdot \sin\left(\varphi + \frac{\pi}{6}\right).$$

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге радиуса R, если $u \mid_{c=R} = 0$.

- 1. Цилиндрический упругий стержень длиной l см, лежащий в горизонтальном положении, закреплен на одном конце x = 0 и оттянут за другой x = l на длину l_1 , затем отпущен без толчка. Изучить его колебания.
- 2. Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные начальным от-клонением $f(\rho) = 0.2 \left(4 \rho^2\right)$.
- 3. Найти общее решение задачи об охлаждении шара радиуса R при условии, что начальное распределение температуры шара задано u(r,0) = f(r), а температура поверхности шара поддерживается равной нулю.
- 4. Найти закон остывания бесконечного цилиндра радиуса R, если в начальный момент температура всех его внутренних точек равна T_0 , а на его поверхности поддерживается нулевая температура.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} - 2xu_x + e^{-2x}, \\ u_t \Big|_{t=0} = u \Big|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_t = u_{xx} + 6u + 2t(1 - 3t) - 6x + 2\cos x \cdot \cos 2x, \\ u_x \Big|_{x=0} = 1, \quad u\Big|_{x=\frac{\pi}{2}} = t^2 + \frac{\pi}{2}, \quad u\Big|_{t=0} = x. \end{cases}$$

- 7. Решить задачу о колебаниях квадратной мембраны, закрепленной на краях x=0, $x=\pi$ и свободной на краях y=0, $y=\pi$, если на мембрану действует равномерно распределенное давление $P=(t-2)\cdot\sin x\cdot\cos 3y$. Начальные отклонения и скорости отсутствуют.
- 8. Нижнее основание цилиндра установлено на теплоизолирующем основании, верхнее основание нагревается равномерно распределенным потоком тепла плотностью q в направлении оси цилиндра. Боковая поверхность цилиндра свободно охлаждается в воздухе, имеющем температуру, равную нулю. Найти стационарное распределение температуры в цилиндре.
- 9. Найти функцию, гармоническую внутри шара единичного радиуса, такую, что

$$u\big|_{r=1} = \sin^2\theta$$
.

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(0, y) = u(1, y) = u_y(x, 1) = u_y(x, 3) = 0$$
.

- 1. Струна длиной l, закрепленная на концах x = 0 x = l, в начальный момент оттянута в точке $x = \frac{l}{2}$ на расстояние h, а затем отпущена без толчка. Определить отклонение u(x,t) точки x струны для любого момента времени t.
- 2. Однородная круглая мембрана радиуса R=1 с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные начальным отклонением $u(x,0) = J_0(\mu_3 x)$ и начальной скоростью $v = J_0(\mu_5 x)$. $(\mu_3, \mu_5 -$ два различных корня уравнения $J_0(\mu) = 0$).
- 3. Найти распределение температуры в шаре радиуса R, поверхность которого, начиная с момента времени t=0, излучает тепло по закону Ньютона, а начальная температура равна u_0 . Температура среды равна нулю.
- 4. Найти распределение температуры в бесконечном цилиндре радиуса R, если начальная температура $u(\rho,0)=0.5-0.3\,\rho^2$, боковая поверхность цилиндра теплоизолирована.
- 5. Решить задачу:

$$\begin{cases} u_t = x u_{xx} + (2 - x) u_x + x^2 - 6x, \\ |u|_{x=0} | < \infty, \quad u|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \mu_2^2 \cdot J_0(\mu_2 x), \\ \left| u \right|_{x=0} \left| < \infty, \quad u \right|_{x=1} = t - 1, \quad u \right|_{t=0} = J_0(\mu_1 x) - 1, \quad u_t \right|_{t=0} = 1, \end{cases}$$

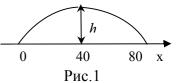
где μ_1 , μ_2 – корни уравнения $J_0(\mu) = 0$.

- 7. Найти температуру стержня с теплоизолированной боковой поверхностью, если левый конец его поддерживается при температуре u_0 , а на правый конец подается постоянный тепловой поток плотностью q. Начальная температура равна нулю.
- 8. Найти стационарное распределение температуры внутри цилиндра радиуса R и высоты h, если к нижнему основанию подводится постоянный тепловой поток плотностью q, верхнее основание поддерживается при нулевой температуре, а боковая поверхность теплоизолирована.
- 9. Найти функцию, гармоническую внутри шара единичного радиуса, такую, что $u\big|_{r=1} = \sin^2\theta \cdot \cos\left(2\varphi \frac{\pi}{4}\right) + \sin\theta \cdot \sin\varphi$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(2, y) = u(4, y) = u_y(x, 0) = u(x, 1) = 0.$$

41

1. Однородная струна длиной 80 см в начальный момент имеет форму параболы высотой h см (рис.1). Изучить свободные колебания этой струны, если ее концы закреплены.



- 2. Найти поперечные колебания круглой мембраны с закрепленным краем, вызванные начальным распределением отклонений $f(\rho)$, если окружающая среда не оказывает сопротивление.
- 3. В пространство между двумя параллельными плоскими стенками (0 < x < a) налит раствор с заданным начальным распределением концентрации растворенного вещества

$$u(x,0) = \begin{cases} 0, & 0 \le x \le c, \\ c_0, & c < x \le a. \end{cases}$$

Проследить последующий процесс выравнивания концентрации, предполагая стенки непроницаемыми для вещества.

- 4. Найти закон остывания бесконечного цилиндра радиуса R=15 см, если в начальный момент времени температура внутри цилиндра равнялась $89J_0(\mu_1\rho)$, где $15\mu_1$ первый положительный корень бесселевой функции $J_0(\rho)$. На поверхности цилиндра поддерживается нулевая температура.
- 5. Решить задачу:

$$\begin{cases} u_{t} = (1 - x^{2})u_{xx} - 2xu_{x} - \frac{1}{1 - x^{2}}u + x\sqrt{1 - x^{2}}, \\ \left| u \right|_{x = \pm 1} \left| < \infty, u \right|_{t = 0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{9}{x^2}u + e^{-t} \cdot J_3(\mu_1 x), \\ |u|_{x=0} | < \infty, \quad u|_{x=1} = u|_{t=0} = u_t|_{t=0} = 0, \end{cases}$$

где μ_1 – корень уравнения $J_3(\mu) = 0$.

- 7. Определить температуру внутри однородного шара единичного радиуса с центром в начале координат, если на поверхности шара происходит конвективный теплообмен со средой, имеющей температуру 5° . Начальная температура шара 2° .
- 8. Найти стационарную температуру $u(\rho, z)$ внутри цилиндрического бруска единичного радиуса и высоты, если основания цилиндра теплоизолированы, а боковая поверхность имеет температуру u(R, z) = z.
- 9. Найти функцию, гармоническую внутри шарового слоя 1 < r < 2, такую, что $u\big|_{r=1} = \cos^2\theta$, $u\big|_{r=2} = 4\cos^2\theta 4/3$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(3, y) = u(2, y) = u(x, 0) = u(x, 4) = 0$$
.

42

- 1. Найти закон колебания струны длины l, если в начальный момент всем точкам струны сообщена скорость, равная $\frac{a}{10}$ (где a- постоянная из уравнения колебания струны). Начальное отклонение отсутствует. Концы струны закреплены.
- 2. Решить задачу о свободных колебаниях квадратной мембраны $0 \le x \le 1$, $0 \le y \le 1$, закрепленной вдоль контура, если

$$u\big|_{t=0} = A \cdot \sin \pi x \cdot \sin \pi y$$
, $u_t\big|_{t=0} = 0$.

- 3. Найти распределение температуры в стержне $0 \le x \le 10$ с теплоизолированной боковой поверхностью, если температура его концов поддерживается равной нулю, а начальная температура $T_0 = 150^{\circ}$.
- 4. Бесконечный цилиндр радиуса R, нагретый до температуры $u_0 = 102^\circ$, охлаждается, излучая тепло по закону Ньютона в окружающую среду нулевой температуры. Найти закон остывания цилиндра.
- 5. Решить задачу:

$$\begin{cases} u_{t} = (1 - x^{2}) u_{xx} - 2xu_{x} + 5x^{3}, \\ \left| u \right|_{x = \pm 1} \right| < \infty, \quad u \right|_{t = 0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} = 7 \ u_t + u_{xx} + 2u_x - 2t - 7x - e^{-x} \cdot \sin 3x, \\ u\big|_{x=0} = 0, \quad u\big|_{x=\pi} = \pi t, \quad u_t\big|_{t=0} = x, \quad u\big|_{t=0} = 0. \end{cases}$$

- 7. Исследовать радиальное распределение тепла в бесконечном круговом цилиндре радиуса R, боковая поверхность которого поддерживается при постоянной температуре 10° . Начальная температура внутри цилиндра равна нулю.
- 8. Цилиндр, радиус основания которого R и высота h, имеет теплоизолированные основания, а температура боковой поверхности представляет данную функцию g(z). Найти стационарную температуру внутренних точек цилиндра.
- 9. Найти функцию, гармоническую внутри сферического слоя 1 < r < 2, такую, что

$$u\big|_{r=1} = 7\sin\theta \cdot \sin\varphi, \quad u\big|_{r=2} = 0.$$

10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в круге радиуса *R*, если

$$u_r\Big|_{r=R}=0$$
.

- 11. Найти закон свободных колебаний струны, расположенной на отрезке [0;l], если в начальный момент времени струне была придана форма кривой $u = \frac{l}{100} \sin \frac{\pi x}{2l}$, а затем струна была отпущена без начальной скорости. Струна закреплена в левом конце, а правый конец может свободно перемещаться так, что касательная в правом конце все время остается горизонтальной.
- 12.Однородная круглая мембрана радиуса R с центром в начале координат и закрепленным краем совершает поперечные колебания в среде без сопротивления. Определить колебания мембраны, вызванные начальным от-клонением $f(\rho) = 1 \rho^2$.
- 13. Найти распределение температуры u(x,t) в неограниченной пластине, если левая грань x = 0 теплоизолирована, правая x = l поддерживается при нулевой температуре, а начальное распределение u(x, 0) = 4(l-x).
- 14. Бесконечный цилиндр радиуса R, нагретый до температуры T_0 , охлаждается, излучая тепло по закону Ньютона в окружающую среду нулевой температуры. Найти закон остывания цилиндра.
- 15. Решить задачу:

$$\begin{cases} u_{t} = (1 - x^{2}) u_{xx} - 2xu_{x} + 5x^{3} + 3x^{2} - 1, \\ \left| u \right|_{x = \pm 1} \left| < \infty, \quad u \right|_{t = 0} = 1.5x. \end{cases}$$

16. Решить задачу:

$$\begin{cases} u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{1}{x^2}u + 2t \cdot J_1(\mu_3 x), \\ |u|_{x=0} | < \infty, \quad u|_{x=1} = u|_{t=0} = u_t|_{t=0} = 0, \end{cases}$$

где μ_3 – корень уравнения $J_1(\mu) = 0$.

- 17. Найти распределение температуры в однородном стержне с теплоизолированной боковой поверхностью, если левый конец стержня поддерживается при температуре 7° , а на правый подается постоянный тепловой поток плотностью q. Начальная температура равна нулю.
- 18. Найти стационарную температуру $u(\rho, z)$ внутренних точек цилиндра радиусом R и высотой h, если температура верхнего и нижнего оснований равна нулю, а температура боковой поверхности изменяется по закону $u(\rho, z) = z(h-z)$.
- 19. Найти функцию, гармоническую внутри сферического слоя 1 < r < 2, такую, что $u\big|_{r=1} = 31\cos\varphi\cdot\sin2\theta$, $u\big|_{r=2} = 31\sin\varphi\cdot\sin2\theta$.
- 20. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u(0, y) = u_x(2, y) = u(x, 1) = u_y(x, 5) = 0$$
.

1. Найти продольные колебания стержня, один конец которого x = 0 закреплен жестко, а другой x = 10 свободен, при начальных условиях:

$$u(x,0) = 0.1x$$
, $u_t\Big|_{t=0} = 0$.

2. Найти решение уравнения $u_{tt} = u_{xx} + \frac{1}{x}u_x - \frac{9}{x^2}u$ (0 < x < 1), удовлетворяющее следующим начальным и граничным условиям:

$$|u(0,t)| < \infty$$
, $u(1,t) = 0$, $u(x,0) = J_3(\mu_1 x)$, $u_t(x,0) = J_3(\mu_1 x)$,

где μ_1 – положительный корень уравнения $J_3(\mu) = 0$. Дать истолкование этой задаче, как задаче о колебаниях круглой мембраны. Каков при этом физический смысл начальных и граничных условий?

- 3. Найти распределение температуры u(x,t) в неограниченной пластине толщиной l, если на поверхностях пластины поддерживается нулевая температура, а начальное распределение температуры по толщине пластины u(x,0) = Ax(l-x).
- 4. Найти концентрацию в растворе, помещенном внутрь цилиндрической трубки радиуса R с непроницаемыми стенками, если начальное распределение концентрации задано равенством $f(\rho) = 0.5 \rho^2 + 1$.
- 5. Решить задачу:

$$\begin{cases} u_{tt} = (1 - x^2)u_{xx} - 2xu_x + t(3x^2 - 1), \\ |u|_{x=\pm 1} | < \infty, \quad u|_{t=0} = u_t|_{t=0} = 0. \end{cases}$$

6. Решить задачу:

$$\begin{cases} u_{tt} - 3u_t = u_{xx} + u - x(4+t) + \cos\frac{3x}{2}, \\ u_x \big|_{x=0} = t+1, \quad u \big|_{x=\pi} = \pi(t+1), \quad u \big|_{t=0} = u_t \big|_{t=0} = x. \end{cases}$$

- 7. Найти распределение температуры внутри неограниченного кругового цилиндра радиуса R, если начальная температура цилиндра равна нулю, а поверхность поддерживается при температуре 12° .
- 8. Найти стационарное распределение температуры внутри цилиндра радиуса R и высоты h, если к верхнему основанию подводится постоянный тепловой поток плотностью q, нижнее основание поддерживается при нулевой температуре, а боковая поверхность теплоизолирована.
- 9. Найти функцию, гармоническую внутри единичной сферы, такую, что $u \mid_{v=1} = \sin \theta \cdot (\sin \varphi + \sin \theta)$.
- 10. Найти ортонормированную систему собственных функций задачи Штурма-Лиувилля для оператора Лапласа в прямоугольнике, если

$$u_x(0,y) = u(2,y) = u(x,1) = u_y(x,3) = 0.$$

5. Справочные сведения

5.1. Сведения об ортогональных многочленах Лежандра и Чебышева

Название полиномов	Лежандра	Чебышева		
Обозначение	$P_n(x), \ x \in (-1;1)$	$T_n(x), x \in (-1;1)$		
Вес ортогональности	ρ=1	$\rho = \frac{1}{\sqrt{1 - x^2}}$		
Оператор, для ко- торого полином является собствен- ной функцией	$Lu = ((1-x^2)u')' = (1-x^2)u'' - 2xu'$	$Lu = \sqrt{1 - x^2} \left(\sqrt{1 - x^2} u' \right)' = \left(1 - x^2 \right) u'' - x u'$		
Соответствующие собственные значения	$\lambda_n = -n(n+1)$	$\lambda_n = -n^2$		
Формула Родрига	$P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left(x^2 - 1\right)^n$	$T_n(x) = \frac{(-2)^n n!}{(2n)!} \sqrt{1 - x^2} \frac{d^n}{dx^n} (1 - x^2)^{n - \frac{1}{2}}$		
Производящая функция	$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, t < 1$	$\frac{1 - xt}{1 - 2xt + t^2} = \sum_{n=0}^{\infty} T_n(x)t^n, t < 1$		
Квадрат нормы	$\left\ P_n(x)\right\ ^2 = \frac{2}{2n+1}$	$ T_n(x) ^2 = \frac{\pi}{2} (n \neq 0), T_0(x) ^2 = \pi$		
Рекуррентные соотношения	$P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x)$ $(2n+1) P_n(x) = P_{n+1}(x) - P_{n-1}(x)$	$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ $2T_n(x) = T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x)$		
Первые многочлены	$P_0(x) = 1$ $P_1(x) = x$ $P_2(x) = \frac{1}{2}(3x^2 - 1)$	$T_0(x) = 1$ $T_1(x) = x$ $T_2(x) = 2x^2 - 1$		
Значения в некоторых точках	$P_{n}(1) = 1, P_{n}(-1) = (-1)^{n},$ $P_{2n+1}(0) = 0,$ $P_{2n}(0) = (-1)^{n} \frac{(2n-1)!!}{(2n)!!}$	$T_n(1) = 1$, $T_n(-1) = (-1)^n$, $T_{2n+1}(0) = 0$, $T_{2n}(0) = (-1)^n$		

5.2. Сведения об ортогональных многочленах Эрмита и Лагерра

Название полиномов	Эрмита	Лагерра
Обозначение	$H_n(x), x \in (-\infty; +\infty)$	$L_n^{\alpha}(x); L_n^0(x) = L_n(x), x \in (0,\infty)$
Вес ортогональности	$\rho = e^{-x^2}$	$\rho = e^{-x} x^{\alpha}$
Оператор, для которо-	2/ 2)'	
го полином является	$Lu = e^{x^{2}} \left(e^{-x^{2}} u' \right)' = u'' - 2xu'$	$Lu = xu'' + (1 - x + \alpha)u'$
собственной функцией	()	
Соответствующие	$\lambda_n = -2n$	$\lambda_n = -n$

собственные значения		
Формула Родрига	$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right)$	$L_n^{\alpha}(x) = \frac{1}{n!} x^{-\alpha} e^x \frac{d^n}{dx^n} \left(x^{n+\alpha} e^{-x} \right)$
Производящая функция	$e^{-t^2+2tx} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$	$\frac{e^{tx/(t-1)}}{\left(1-t\right)^{\alpha+1}} = \sum_{n=0}^{\infty} L_n^{\alpha}(x)t^n$
Квадрат нормы	$\ H_n(x)\ ^2 = 2^n n! \sqrt{\pi}$	$\left\ L_n^{\alpha}(x)\right\ ^2 = \frac{\Gamma(n+\alpha+1)}{n!}$
Рекуррентные соотношения	$H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)$ $2n H_{n-1}(x) = H'_n(x)$	$(n+1) L_{n+1}^{\alpha}(x) =$ $= (2n+1+\alpha-x) L_n^{\alpha}(x) - (n+\alpha) L_{n-1}^{\alpha}(x),$ $\left(L_n^{\alpha}(x)\right)' = -L_{n-1}^{\alpha+1}(x) (n>1)$
Первые многочлены	$H_0(x) = 1$, $H_1(x) = 2x$, $H_2(x) = 4x^2 - 2$	$L_0^{\alpha}(x) = 1, L_1^{\alpha}(x) = 1 + \alpha - x,$ $L_2^{\alpha}(x) = \frac{x^2}{2} - x(2 + \alpha) + \frac{(2 + \alpha)(1 + \alpha)}{2}$
Значения в некоторых точках	$H_{2n+1}(0) = 0,$ $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$	$L_n(0)=1$

5.3. Сведения об ортогональных функциях Лежандра и Эрмита

Название функций	Лежандра	Эрмита
Обозначение	$P_n^k(x), \ x \in (-1;1)$	$\psi_n(x), x \in (-\infty, +\infty)$
Вес ортогональности	$\rho = 1$	ρ=1
Квадрат нормы	$\left\ P_n^k(x)\right\ ^2 = \frac{2}{2n+1} \cdot \frac{(n+k)!}{(n-k)!}$	$\left\ \psi_n(x)\right\ ^2=1$
Оператор, для которого функции являнотся собственными	$Lu = (1 - x^{2})u'' - 2xu' - \frac{k^{2}u}{1 - x^{2}}$ $u(\pm 1) = 0$	$Lu = u'' + (1 - x^2)u$ $u(\pm \infty) = 0$
Соответствующие собственные значения	$\lambda_n = -n(n+1)$	$\lambda_n = -2 n$
Рекуррентные соотношения	$(2n+1)xP_n^k(x) - (n-k+1)P_{n+1}^k(x) - (k+n)P_{n-1}^k(x) = 0$	$\sqrt{n+1} \Psi_{n+1}(x) =$ $= \sqrt{2} x \Psi_n(x) - \sqrt{n} \Psi_{n-1}(x)$
Явное выражение	$P_n^k(x) = \left(1 - x^2\right)^{k/2} \frac{d^k}{dx^k} P_n(x)$	$\Psi_n(x) = e^{-x^2/2} \frac{H_n(x)}{\ H_n\ }$
Частные случаи	$P_n^0(x) = P_n(x), P_n^k(x) \equiv 0 (k > n),$ $P_1^1(x) = \sqrt{1 - x^2}, P_2^1(x) = 3x\sqrt{1 - x^2},$ $P_2^2(x) = 3(1 - x^2)$	$\Psi_0(x) = e^{-x^2/2} \pi^{-1/4}$ $\Psi_1(x) = \sqrt{2} x e^{-x^2/2} \pi^{-1/4}$

5.4. Сведения о функциях Бесселя

Название	Функции Бесселя	Модифицированные функции Бесселя
Обозначение	$J_p(\mu x), x \in (0;l)$	$I_p(\mu x) = \frac{1}{i^p} J_p(i\mu x), x \in (0;l)$
Вес ортого-	$\rho = x$	$\rho = x$
нальности	Ρ	μ
Квадрат нормы		$ I_{p}(\mu x) ^{2} =$ $= \frac{l^{2}}{2} \left[I_{p}^{\prime 2}(\mu l) + \left(1 + \frac{p^{2}}{\mu^{2} l^{2}} \right) I_{p}^{2}(\mu l) \right]$
Оператор, для которого функции являются собственными	$Lu = u'' + \frac{1}{x}u' - \frac{p^2}{x^2}u$	$Lu = u'' + \frac{1}{x}u' - \frac{p^2}{x^2}u$
Соответствую-		
щие собственные	$\lambda = -\mu^2$	$\lambda = +\mu^2$
значения		
	$(x^p J_p(x))' = x^p J_{p-1}(x)$	$(x^p I_p(x))' = x^p I_{p-1}(x)$
Рекуррентные	$(x^{-p}J_p(x))' = -x^{-p}J_{p+1}(x)$	$(x^{-p}I_p(x))' = x^{-p}I_{p+1}(x)$
соотношения	$\frac{2p}{x}J_p(x) = J_{p-1}(x) + J_{p+1}(x)$	$\frac{2p}{x}I_p(x) = I_{p-1}(x) - I_{p+1}(x)$
	$2J_{p}'(x) = J_{p-1}(x) - J_{p+1}(x)$	$2I_{p}'(x) = I_{p-1}(x) + I_{p+1}(x)$
Явное выражение	$J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n+p}}{n! \Gamma(p+n+1)}$	$I_p(x) = \sum_{n=0}^{\infty} \frac{(x/2)^{2n+p}}{n! \Gamma(p+n+1)}$
Частные случаи	$J_{-n}(x) = (-1)^n J_n(x)$ $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	$I_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{sh} x$ $I_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{ch} x$

Корни уравнения $J_0(\mu) = 0$ и соответствующие значения функции $J_1(\mu)$

n	1	2	3	4	5	6
μ_n	2.4048	5.5201	8.6537	11.7915	14.9309	18.0711
$J_1(\mu_n)$	0.5191	- 0,3403	0.2715	-0.2325	0.2065	0.1877

Корни уравнения $\alpha \cdot J_0(\mu) - \mu \cdot J_1(\mu) = 0$

α	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
0,0	0,0000	3,8317	7,0156	10,1735	13,3237	16,4706
0,01	0,1412	3,8343	7,0170	10,1745	13,3244	16,4712
0,02	0,1995	3,8369	7,0184	10,1754	13,3252	16,4718
0,03	0,2814	3,8421	7,0213	10,1774	13,3267	16,4731
0,06	0,3438	3,8473	7,0241	10,1794	13,3282	16,4743
0,08	0,3960	3,8525	7,0270	10,1813	13,3297	16,4755
0,10	0,4417	3,8577	7,0298	10,1833	13,3312	16,4767
0,15	0,5376	3,8706	7,0369	10,1882	13,3349	16,4797
0,20	0,6170	3,8835	7,0440	10,1931	13,3387	16,4828
0,30	0,7465	3,9091	7,0582	10,2029	13,3462	16,4888
0,40	08516	3,9344	7,0723	10,2127	13,3537	16,4949
0,50	0,9408	3,9594	7,0864	10,2225	13,3611	16,5010
0,60	1,0184	3,9841	7,1004	10,2322	13,3686	16,5070
0,70	1,0873	4,0085	7,1143	10,2419	13,3761	16,5131
0,80	1,1490	4,0325	7,1282	10,2519	13,3835	16,5191
0,90	1,2048	4,0562	7,1421	10,2613	13,3910	16,5251
1,0	1,2558	4,0795	7,1558	10,2710	13,3984	16,5312
1,5	1,4569	4,1902	7,2223	10,3188	13,4353	16,5612
2,0	1,5994	4,2910	7,2884	10,3658	13,4719	16,5910
3,0	1,7887	4,4634	7,4103	10,4566	13,5434	16,6499
4,0	1,9081	4,6018	7,5201	10,5423	13,6125	16,7073
5,0	1,9898	4,7131	7,6177	10,6223	13,6786	16,7630
6,0	2,0490	4,8033	7,7039	10,6964	13,7414	16,8168
7,0	2,0937	4,8772	7,7797	10,7646	13,8008	16,8684
8,0	2,1286	4,9384	7,8464	10,8271	13,8566	16,9179
9,0	2,1566	4,9897	7,9051	10,8842	13,9090	16,9650
10,0	2,1795	5,0332	7,9569	10,9363	13,9580	17,0099
15,0	2,2509	5,1773	8,1422	11,1367	14,1576	17,2008
20,0	2,2880	5,2568	8,2534	11,2677	14,2983	17,3442
30,0	2,3261	5,3410	8,3771	11,4221	14,4221	17,5348

Корни уравнения $\operatorname{tg} \mu = -\frac{\mu}{h}$

h	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
0	1,5708	4,7124	7,8540	10,9956	14,1372	17,2788
0,1	1,6320	4,7335	7,8667	11,0047	14,1443	17,2845
0,2	1,6887	4,7544	7,8794	11,0137	14,1513	17,2903
0,3	1,7414	4,7751	7,8920	11,0228	14,1584	17,2961
0,4	1,7906	4,7956	7,9046	11,0318	14,1654	17,3019
0,5	1,8366	4,8158	7,9171	11,0409	14,1724	17,3076

h	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
0,6	1,8798	4,8358	7,9295	11,0498	14,1795	17,3134
0,7	1,9203	4,8556	7,9419	11,0588	14,1865	17,3192
0,8	1,9586	4,8751	7,9542	11,0677	14,1935	17,3249
0,9	1,9947	4,8943	7,9665	11,0767	14,2005	17,3306
1,0	2,0288	4,9132	7,9787	11,0856	14,2075	17,3364
1,5	2,1746	5,0037	8,0382	11,1296	14,2421	17,3649
2,0	2,2889	5,0870	8,0965	11,1727	14,2764	17,3932
3,0	2,4557	5,2329	8,2045	11,2560	14,3434	17,4490
4,0	2,5704	5,3540	8,3029	11,3349	14,4080	17,5034
5,0	2,6537	5,4544	8,3914	11,4086	14,4698	17,5562
6,0	2,7165	5,5378	8,4703	11,4773	14,5288	17,6072
7,0	2,7654	5,6078	8,5406	11,5408	14,5847	17,6562
8,0	2,8044	5,6069	8,6031	11,5994	14,6374	17,7032
9,0	2,8363	5,7172	8,6587	11,6532	14,0880	17,7481
10,0	2,8628	5,7606	8,7083	11,7027	14,7335	17,7908
15,0	2,9176	5,9080	8,8898	11,8959	14,9251	17,9742
20,0	2,9930	5,9921	9,0019	12,0250	15,0625	18,1136
30,0	3,0406	6,0831	9,1294	12,1807	15,2380	18,3018
40,0	3,0651	6,1311	9,1986	12,2688	15,3417	18,4180
50,0	3,0801	6,1606	9,2420	12,3247	15,4090	18,4953

Значения функций Бесселя $J_0(x),\ J_1(x),\ N_0(x),\ N_1(x)$

x	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
0,0	1,0000	0,0000	- ∞	$-\infty$
0,1	0,9975	0,0499	-1,534	-6,459
0,2	0,9900	0,0995	-1,081	-3,324
0,3	0,9776	0,1483	-0,8073	-2,293
0,4	0,9604	0,1960	-0,6060	-1,781
0,5	0,9385	0,2423	-0,4445	-1,471
0,6	0,9120	0,2867	-0,3085	-1,260
0,7	0,8812	0,3290	-0,1907	-1,103
0,8	0,8463	0,3688	-0,0868	-0,9781
0,9	0,8075	0,4059	+0,0056	-0,8781
1,0	0,7652	0,4401	0,0883	-0,7812
1,1	0,719,6	0,4709	0,1622	-0,6981
1,2	0,6711	0,4983	0,2281	-0,6211
1,3	0,6201	0,5220	0,2865	-0,5485
1,4	0,5669	0,5419	0,3379	-0,4791
1,5	0,5118	0,5579	0,3824	-0,4123
1,6	0,4554	0,5699	0,4204	-0,3476
1,7	0,3980	05778	0,4520	-0,2847
1,8	0,3400	0,5815	0,4704	-0,2237
1,9	0,2818	0,5812	0,4968	-0,1644
2,0	0,2239	0,5767	0,5104	-0,1070
2,1	0,1666	0,5683	0,5183	-0,0517

v	$L(\mathbf{r})$	L(r)	$N_{r}(x)$	$N_{r}(x)$
<i>x</i>	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
2,2	0,1104	0,5560	0,5208	+0,0015
2,3	0,0555	0,5399	0,5181	0,0523
2,4	0,0025	0,5202	0,5104	0,1005
2,5	-0,0484	0,4971	0,4981	0,1459
2,6	-0,0968	0,4708	0,4812	0,1884
2,7	-0,1424	0,4416	0,4605	0,2276
2,8	-0,1850	0,4097	0,4359	0,2635
2,9	-0,2243	0,3754	0,4079	0,2959
3,0	-0,2601	0,3391	0,3769	0,3247
3,1	-2,2921	0,3009	0,3431	0,3496
3,2	-0,3202	0,2612	0,3071	03707
3,3	-0,3443	0,2207	0,2691	0,3879
3,4	-0,3643	0,1792	0,2296	0,4010
3,5	-0,3801	0,1374	0,1890	0,4102
3,6	-0,3918	0,0955	0,1477	0,4154
3,7	-0,2992	0,0538	0,1061	0,4167
3,8	-0,4026	0,0128	0,0645	0,4141
3,9	-0,4018	-0,0272	0,0234	0,4078
4,0	-0,3971	-0,0660	-0,0169	0,3979
4,1	-0,3887	-0,1033	-0,0561	0,3846
4,2	-0,3766	-0,1386	-0,0938	0,3680
4,3	-0,3610	-0,1719	-0,1296	0,3484
4,4	-0,3423	-0,2028	-0,1633	0,3260
4,5	-0,3205	-0,2311	-0,1947	0,3010
4,6	-0,2961	-02566	-0,2235	0,2737
4,7	-0,2693	-0,2791	-0,2494	0,2445
4,8	-0,2404	-0,2985	-0,2723	0,2136
4,9	-0,2097	-0,3147	-0,2921	0,1812
5,0	-0,1776	-0,3276	-0,3085	0,1479
5,1	-0,1443	-0,3371	-0,3216	0,1137
5,2	-0,1103	-0,3432	-0,3313	0,0792
5,3	-0,0758	-0,3460	-0,3374	0,0445
5,4	-0,0412	-0,3453	-0,3402	0,0101
5,5	-0,0068	-0,3414	-0,3395	-0,0238
5,6	+0,0270	-0,3343	-0,3354	-0,0568
5,7	0,0599	-0,3241	-0,3282	-0,0887
5,8	0,0917	-0,3110	-0,3177	-0,1192
5,9	0,1220	-0,2951	-0,3044	-0,1481
6,0	0,1506	-0,2767	-0,2882	-0,1750
6,1	0,1773	-0,2559	-0,2684	-0,1998
6,2	0,2017	-0,2329	-,02483	-0,2223
6,3	0,2238	-0,2081	-0,2251	-0,2422
6,4	0,2433	-0,1816	-0,1999	-02596
6,5	0,2601	-0,1538	-0,1732	-0,2741
6,6	0,2740	-0,1250	-0,1452	-0,2857
6,7	0,2851	-0,0953	-0,1162	-0,2945
6,8	0,2931	-0,0652	-0,0864	-0,3002
6,9	0,2981	-0,0349	-0,0563	-0,3029
7,0	0,3001	-0,0047	-0,0259	-0,3027
7,0	0,5001	-0,00+/	-0,0239	-0,3027

x	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
7,1	0,2991	+0,0252	+0,0042	-0,2995
7,2	0,2951	0,0543	0,0339	-0,2934
7,3	0,2882	0,0826	0,0628	-0,2846
7,4	0,2786	0,1096	0,0907	-0,2731
7,5	0,2663	0,1352	0,1173	-0,2591
7,6	0,2516	0,1592	0,1424	-0,2428
7,7	0,2346	0,1813	0,1658	-0,2243
7,8	0,2154	0,2014	0,1872	-0,2039
7,9	0,1944	0,2192	02065	-0,1817
8,0	0,1717	0,2346	0,2235	-0,1581
8,1	0,1475	0,2476	0,2381	-0,1331
8,2	0,1222	00,2580	0,2501	-0,1072
8,3	0,0960	0,2657	0,2595	-0,0806
8,4	0,0692	0,2708	0,2662	-0,0535
8,5	0,0419	0,2731	0,2702	-0,0262
8,6	0,0146	0,2728	02715	+0,0011
8,7	-0,0125	0,2697	0,2700	0,0280
8,8	-0,0392	0,2641	0,2659	0,0544
8,9	-0,0653	0,2559	0,2592	0,0799
9,0	-0,0903	0,2453	0,2499	0,1043
9,1	0,1142	0,2324	0,2383	0,1275
9,2	-0,1367	0,2174	0,2345	0,1491
9,3	-0,1577	0,2004	0,2086	0,1691
9,4	-0,1768	01816	0,1907	0,1871
9,5	-0,1939	0,1613	0,1712	0,2032
9,6	-0,2090	0,1395	0,1502	0,2171
9,7	-0,2218	0,1166	0,1279	0,2287
9,8	-0,2323	0,0928	0,1045	0,2379
9,9	-0,2403	0,0684	0,0804	0,2447
10,0	-0,2459	0,0435	0,0557	02490
10,1	-0,2490	0,0184	0,0307	0,2508
10,2	-0,2496	0,0066	0,0056	0,2502
103	-0,2477	0,0313	-0,0193	0,2471
10,4	-0,2434	-0,0555	-0,0437	0,2416

5.5. Оператор Лапласа

Оператор Лапласа Δu в прямоугольной системе координат:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = u_{xx} + u_{yy} + u_{zz}.$$

Оператор Лапласа Δu в полярной системе координат:

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} = u_{\rho\rho} + \frac{1}{\rho} u_{\rho} + \frac{1}{\rho^2} u_{\varphi\varphi}.$$

Оператор Лапласа Δu в цилиндрической системе координат:

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial z^2} = u_{\rho \rho} + \frac{1}{\rho} u_{\rho} + \frac{1}{\rho^2} u_{\varphi \varphi} + u_{zz}$$

Оператор Лапласа Δu в сферической системе координат:

$$\Delta u = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin^2 \theta} \cdot \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) \right] =$$

$$= u_{rr} + \frac{2}{r} u_r + \frac{1}{r^2 \sin^2 \theta} u_{\phi\phi} + \frac{1}{r^2 \sin \theta} \left(\sin \theta \cdot u_{\theta} \right)_{\theta}$$

5.6. Общее решение уравнения Лапласа в круговой и шаровой областях

Общее решение уравнения Лапласа в круговой области имеет вид:

$$u(\rho,\varphi) = a \cdot \ln \rho + b + \sum_{k=1}^{\infty} \left[\left(a_k \rho^k + b_k \rho^{-k} \right) \cos k\varphi + \left(c_k \rho^k + d_k \rho^{-k} \right) \sin k\varphi \right].$$

Общее решение уравнения Лапласа в шаровой области имеет вид:

$$u(r,\varphi,\theta) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \left[\left(a_n^k r^n + \frac{b_n^k}{r^{n+1}} \right) \cdot P_n^k(\cos\theta) \cdot \cos k\varphi + \left(c_n^k r^n + \frac{d_n^k}{r^{n+1}} \right) \cdot P_n^k(\cos\theta) \cdot \sin k\varphi \right].$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Краснов М.Л. Вся высшая математика / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Эдиториал УРСС, 2005. Т.4. 352 с.
- 2. Арсенин В.Я. Методы математической физики и специальные функции / В.Я. Арсенин. М.: Наука, 1994. 383 с.
- 3. Сборник задач по математике для втузов. В 4 ч. Ч.4 / под ред. А.В. Ефимова, Б.П. Демидовича. М.: Наука, 2000. 464 с.
- 4. Очан Ю.С. Сборник задач по методам математической физики / Ю.С. Очан. М.: Наука, 1984. 195 с.
- 5. Голоскопов Д.П. Уравнения математической физики. Решение задач в системе Maple / Д.П. Голоскопов. СПб., 2004. 539 с.
- 6. Пикулин В.П. Практический курс по уравнениям математической физики / В.П. Пикулин, С.И. Похожаев. М.: Изд-во МИНМО, 2004. 208 с.
- 7. Бронштейн И. Н. Справочник по математике для инженеров и учащихся втузов /И.Н. Бронштейн, К.А. Семендяев. М.: Наука, 1980. 946 с.
- 8. Янке Е. Специальные функции. Формулы, графики, таблицы / Е. Янке, Ф. Эмде, Ф. Леш. М.: Наука, 1977. 343 с.
- 9. Корн Г. Справочник по математике для научных работников и инженеров / Г. Корн, Т. Корн. М.: Наука, 1977. 831 с.

Оглавление

1. Задача Штурма-Лиувилля	3
2. Специальные функции	.10
3. Приведенит уравнений математической физики к каноническому виду	.20
4. Задачи математической физики	.22
5. Справочные сведения	.46
5.1. Сведения об ортогональных многочленах Лежандра и Чебышева	.46
5.2. Сведения об ортогональных многочленах Эрмита и Лагерра	.46
5.3. Сведения об ортогональных функциях Лежандра и Эрмита	.47
5.4. Сведения о функциях Бесселя	.48
5.5. Оператор Лапласа	.53
5.6. Общее решение уравнения Лапласа в круговой и шаровой областях	.53
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	.55

Математическая физика

Сборник типовых заданий и справочные сведения

Составители Минькова Ревекка Максовна, Трещева Валентина Васильевна, Абрамова Альбина Борисовна, Карасик Геда Яковлевна, Дема Зинаида Петровна.

Редактор Н.П. Кубыщенко

Компьютерная верстка Р.М. Миньковой

ИД № 06263 5. 12. 11. 2001

Подисано в печать 25. 01. 2007 Бумага типографская Цифровая печать Уч.-изд. л. 2,7 Тираж Заказ

Формат 60×84 1/16 Усл. печ.л. 3.26 Цена "С"

Редакционно-издательский отдел ГОУ ВПО УГТУ-УПИ 620002, Екатеринбург, Мира, 19 Ризография НИЧ ГОУ ВПО УГТУ-УПИ

620002, Екатеринбург, Мира, 19