Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б.Н. Ельцина

Р. М. Минькова

Математическая физика в примерах и задачах

Рекомендовано методическим советом УрФУ в качестве учебного пособия для студентов, обучающихся по программе бакалавриата и специалитета по направлениям подготовки

140800.62 – Ядерные физика и технологии;

141401.65 – Ядерные реакторы и материалы;

141405.65 — Технологии разделения изотопов и ядерное топливо;

140801.65 – Электроника и автоматика физических установок;

010900.62 – Прикладные математика и физика;

210100.62 – Электроника и наноэлектроника

Екатеринбург УрФУ 2013 УДК 517(075.8) ББК 22.161я73 М62

Рецензенты:

кафедра прикладной математики Уральского государственного экономического университета

(зав. кафедрой, доц., канд. физ.-мат. наук Ю.Б. Мельников); старший научный сотрудник Института математики и механики УрО РАН, проф., д-р физ.-мат. наук Е.Ф. Леликова;

Научный редактор – доц., канд. физ.-мат. наук Н.В. Чуксина

М62 Минькова, Р.М.

Математическая физика в примерах и задачах : учебное пособие / Р.М. Минькова. Екатеринбург: УрФУ, 2013. 95 с.

ISBN

В данной работе разбирается решение типовых примеров и задач по следующим темам курса «Методы математической физики»: элементы функционального анализа, специальные функции, постановка простейших задач математической физики и методы их решения, вариационное исчисление.

Работа предназначена для студентов физико-технического факультета.

Библиогр.: 16 назв. Рис. 3. Прил. 2.

УДК 517 (075.8) ББК 22.161я73

1. Элементы функционального анализа

1.1. Евклидовы пространства

Ограничимся евклидовым пространством над полем действительных чисел.

Onpedenetue. Евклидовым пространством H (над полем действительных чисел) называют линейное пространство (над полем действительных чисел), в котором определено скалярное произведение любых двух элементов x, y, т.е. действительное число (x, y), удовлетворяющее следующим аксиомам:

- a) $(x,x) \ge 0$;
- δ) $(x,x)=0 \Leftrightarrow x=0$;
- B) (x, y) = (y, x);
- Γ) $(\lambda x, y) = \lambda(x, y)$;
- $\exists (x_1 + x_2, y) = (x_1, y) + (x_2, y).$

Свойства евклидова пространства

- 1. $(x, \lambda y) = \lambda (x, y)$.
- 2. $(x, y_1 + y_2) = (x, y_1) + (x, y_2)$.
- 3. В евклидовом пространстве можно ввести норму

$$||x|| = \sqrt{(x,x)}.$$

4. Неравенство Коши-Буняковского:

$$|(x,y)| \le \sqrt{(x,x)} \cdot \sqrt{(y,y)}$$
 или $|(x,y)| \le ||x|| \cdot ||y||$.

Примеры евклидовых пространств

1. В пространстве R_n для элементов $x = (x_1, x_2, ..., x_k), y = (y_1, y_2, ..., y_k)$ скалярное произведение определяется формулой $(x, y) = x_1 \cdot y_1 + x_2 \cdot y_2 + ... + x_k \cdot y_k$.

Тогда норма $\|x\| = \sqrt{(x,x)} = \sqrt{x_1^2 + x_2^2 + ... + x_k^2}$ совпадает с нормой введенной ранее.

2. В пространстве $L_2^{\rho}[a,b]$ для элементов x = x(t), y = y(t) скалярное произведе-

ние определяется формулой $(x,y) = \int\limits_a^b \rho(t)x(t)y(t)dt$. Тогда норма $\|x\| = \sqrt{(x,x)} = \sqrt{\int\limits_a^b \rho(t)x^2(t)dt}$ совпадает с нормой введенной ранее.

Пример 1.1. Можно ли в пространстве дифференцируемых на [a,b] функций ввести скалярное произведение следующим образом:

1)
$$(x,y) = \int_{a}^{b} [x(t)y(t) + x'(t)y'(t)]dt;$$
 2) $(x,y) = \int_{a}^{b} x'(t)y'(t)dt.$

Решение. Проверим аксиомы скалярного произведения.

1. Для величины
$$(x,y) = \int_{a}^{b} [x(t)y(t) + x'(t)y'(t)]dt$$
 имеем:

a)
$$(x,x) = \int_{a}^{b} \left[x^{2}(t) + x'^{2}(t) \right] dt \ge 0;$$

$$\delta(x,x) = \int_{0}^{b} \left[x^{2}(t) + x'^{2}(t)\right] dt = 0 \quad \Leftrightarrow \quad x(t) \equiv 0;$$

$$s) (x,y) = \int_{a}^{b} [x(t)y(t) + x'(t)y'(t)] dt = (y,x);$$

$$\varepsilon) (\lambda x, y) = \int_{a}^{b} [\lambda x(t)y(t) + \lambda x'(t)y'(t)] dt = \lambda (x, y);$$

$$\partial) (x_1 + x_2, y) = \int_a^b \left[(x_1(t) + x_2(t)) y(t) + (x_1(t) + x_2(t))' y'(t) \right] dt = (x_1, y) + (x_2, y) .$$

Следовательно, выполнены все аксиомы скалярного произведения и величина $(x,y) = \int_a^b [x(t)y(t) + x'(t)y'(t)] dt$ является скалярным произведением.

2. Для величины $(x, y) = \int_{a}^{b} x'(t)y'(t)dt$ имеем:

a)
$$(x,x) = \int_{a}^{b} x'^{2}(t) dt \ge 0;$$

$$\delta(x,x) = \int_{a}^{b} x'^{2}(t) dt = 0 \iff x'(t) = 0 \iff x(t) = C.$$

Итак, вторая аксиома не выполняется и величина $(x,y) = \int_a^b x'(t)y'(t)dt$ не является скалярным произведением.

Ортогональные системы в евклидовом пространстве

Систему элементов $x_1, x_2, ..., x_n, ...$ называют ортогональной, если ее элементы попарно ортогональны, т.е. $(x_i, x_k) = 0$ при $i \neq k$.

Систему элементов $x_1, x_2, ..., x_n, ...$ называют ортонормированной, если она является ортогональной и ее элементы нормированы, т.е. $||x_k|| = 1$ (k = 1, 2, ...).

Бесконечную систему элементов $x_1, x_2, ..., x_n, ...$ называют линейно независимой, если любая ее конечная подсистема линейно независима.

Примером бесконечной линейно независимой системы является система функций 1, t, t^2 ,..., t^n ,... .

Отметим некоторые свойства ортогональных систем, известные из алгебры.

1. Для ортогональных элементов справедлива теорема Пифагора:

$$||x + y||^2 = ||x||^2 + ||y||^2$$
, $||x + y + z||^2 = ||x||^2 + ||y||^2 + ||z||^2$.

- 2. Всякая *ортогональная* система ненулевых элементов является *линейно независимой* системой.
- 3. Всякую *линейно независимую* систему $x_1, x_2, ..., x_n, ...$ можно *ортогонализиро-вать*, т.е. построить ортогональную систему $y_1, y_2, ..., y_n, ...$ следующим образом:

$$\begin{cases} y_1 = x_1, \\ y_2 = x_2 + a_{21}y_1, \\ y_3 = x_3 + a_{31}y_1 + a_{32}y_2, \\ \dots \end{cases}$$

Коэффициент a_{21} определяется из условия $(y_2, y_1) = 0$, коэффициенты a_{31}, a_{32} определяются из условий $(y_3, y_1) = 0$, $(y_3, y_2) = 0$ и т.д.

Пример 1.2. Ортогонализировать систему функций $x_1(t) = 1$, $x_2(t) = t$, $x_3(t) = t^2$ в пространстве $L_2^{\rho}(0,\infty)$, $\rho = e^{-t}$.

Решение. Построим ортогональную систему функций $y_1(t), y_2(t), y_3(t),$ положив

$$y_1(t) = x_1(t), \quad y_2(t) = x_2(t) + a_{21}y_1(t), \quad y_3(t) = x_3(t) + a_{31}y_1(t) + a_{32}y_2(t).$$

Вычислим коэффициенты a_{21} , a_{31} , a_{32} из условия ортогональности функций

$$\begin{split} y_1(t), \ y_2(t), \ y_3(t), \ \text{используя свойство гамма-функции:} & \int\limits_0^\infty e^{-t} \cdot t^n \ dt = \Gamma(n+1) = n! \colon \\ 0 &= (y_2, y_1) = \left(x_2(t) + a_{21}y_1(t), y_1(t)\right) = \left(x_2(t), y_1(t)\right) + a_{21}\left(y_1(t), y_1(t)\right) = \\ &= \int\limits_0^\infty \rho \cdot t \cdot 1 \ dt + a_{21}\int\limits_0^\infty \rho \cdot 1 \cdot 1 \ dt = \int\limits_0^\infty e^{-t} \cdot t \ dt + a_{21}\int\limits_0^\infty e^{-t} dt = 1! + a_{21} \cdot 0! = 1 + a_{21} \\ &\Rightarrow a_{21} = -1, \quad y_2(t) = x_2(t) + a_{21}y_1(t) = t - 1, \\ 0 &= \left(y_3, y_1\right) = \left(x_3 + a_{31}y_1 + a_{32}y_2, y_1\right) = \left(x_3, y_1\right) + a_{31}\left(y_1, y_1\right) + a_{32}\underbrace{\left(y_2, y_1\right)} = \\ &= \int\limits_0^\infty e^{-t} \cdot t^2 \cdot 1 \ dt + a_{31}\int\limits_0^\infty e^{-t} \cdot 1 \cdot 1 \ dt = 2! + a_{31} \cdot 0! = 2 + a_{31} \quad \Rightarrow \quad a_{31} = -1, \\ 0 &= \left(y_3, y_2\right) = \left(x_3 + a_{31}y_1 + a_{32}y_2, y_2\right) = \left(x_3, y_2\right) + a_{31}\underbrace{\left(y_1, y_2\right)} + a_{32}\left(y_2, y_2\right) = \\ &= \int\limits_0^\infty e^{-t} \cdot t^2(t-1) \ dt + a_{32}\int\limits_0^\infty e^{-t} \left(t-1\right)^2 dt = 3! - 2! + a_{32}\left(2! - 2 \cdot 1! + 0!\right) = 4 + a_{32} \quad \Rightarrow \quad a_{32} = -4, \\ y_3 &= x_3 + a_{31}y_1 + a_{32}y_2 = t^2 - 2 - 4(t-1) = t^2 - 4t + 2. \end{split}$$

Итак, система функций $y_1(t)=1$, $y_2(t)=t-1$, $y_3(t)=t^2-4t+2$ является ортогональной в пространстве $L_2^{\rho}(0,\infty)$, $\rho=e^{-t}$.

Ряды Фурье по ортогональной системе

Рядом Фурье элемента f по ортогональной системе $\varphi_1, \varphi_2, ..., \varphi_n, ...$ называют ряд $\sum_{k=1}^{\infty} c_k \, \varphi_k$ с коэффициентами Фурье

$$c_k = \frac{\left(f, \varphi_k\right)}{\left(\varphi_k, \varphi_k\right)} = \frac{\left(f, \varphi_k\right)}{\left\|\varphi_k\right\|^2} . \tag{1.1}$$

Пример 1.3. Проверить ортогональность системы функций $\left\{ \varphi_k \left(t \right) = \frac{1}{t} \sin kt \right\}_{k=1}^{\infty}$ в пространстве $L_2^{\rho} \left[\pi, 2\pi \right], \; \rho = t^2$. Разложить в ряд Фурье по этой системе функцию $f\left(t \right) = \frac{1}{t}$.

Решение. 1. Вычислим в пространстве $L_2^{\rho}[\pi, 2\pi], \ \rho = t^2$ скалярное произведение

$$(\varphi_k, \varphi_n) = \int_{\pi}^{2\pi} \rho(t) \varphi_k(t) \varphi_n(t) dt = \int_{\pi}^{2\pi} t^2 \cdot \frac{1}{t} \sin kt \cdot \frac{1}{t} \sin nt dt = \int_{\pi}^{2\pi} \sin kt \cdot \sin nt dt =$$

$$= \frac{1}{2} \int_{\pi}^{2\pi} \left[\cos(k-n)t - \cos(k+n)t \right] dt = \frac{1}{2} \left(\frac{\sin(k-n)t}{k-n} - \frac{\sin(k+n)t}{k+n} \right) \Big|_{\pi}^{2\pi} = 0 \qquad (k \neq n).$$

Так как $(\varphi_k, \varphi_n) = 0$, то система функций $\left\{ \varphi_k \left(t \right) = \frac{1}{t} \sin kt \right\}_{k=1}^{\infty}$ ортогональна в пространстве $L_2^{\rho} \left[\pi, 2\pi \right], \; \rho = t^2$.

2. Для разложения функции $f(t) = \frac{1}{t}$ в ряд Фурье по ортогональной системе функций $\{\varphi_k(t)\}$ вычислим коэффициенты Фурье $c_k = \frac{\left(f, \varphi_k\right)}{\left(\varphi_k, \varphi_k\right)} = \frac{\left(f, \varphi_k\right)}{\left\|\varphi_k\right\|^2}$:

$$(f, \varphi_k) = \int_{\pi}^{2\pi} \rho(t) f(t) \varphi_k(t) dt = \int_{\pi}^{2\pi} t^2 \cdot \frac{1}{t} \cdot \frac{1}{t} \sin kt \, dt = \int_{\pi}^{2\pi} \sin kt \, dt = -\frac{\cos kt}{k} \begin{vmatrix} 2\pi \\ \pi \end{vmatrix} = \begin{cases} 0, & k = 2n, \\ -2/k, & k = 2n + 1, \end{cases}$$

$$(\varphi_k, \varphi_k) = \int_{\pi}^{2\pi} \rho(t) \varphi_k^2(t) dt = \int_{\pi}^{2\pi} t^2 \cdot \frac{1}{t^2} \sin^2 kt \, dt = \int_{\pi}^{2\pi} \frac{1 - \cos 2k \, t}{2} \, dt = \frac{1}{2} \left(t - \frac{\sin 2k \, t}{2k} \right) \bigg|_{\pi}^{2\pi} = \frac{\pi}{2}.$$

Тогда
$$c_k = \frac{\left(f, \varphi_k\right)}{\left(\varphi_k, \varphi_k\right)} = \begin{cases} 0, & k = 2n, \\ -\frac{4}{\pi k}, & k = 2n+1 \end{cases}$$
 И $f\left(t\right) = \sum_{k=1}^{\infty} c_k \, \varphi_k\left(t\right) = \sum_{n=0}^{\infty} \, \frac{-4}{\pi \left(2n+1\right)} \varphi_{2n+1}\left(t\right).$

1.2. Задача Штурма-Лиувилля

При решении задач математической физики удобно использовать базис из собственных функций некоторого дифференциального оператора, связанного с

физической задачей. Задачей Штурма—Лиувилля называют задачу отыскания собственных функций дифференциального оператора L, удовлетворяющих граничному условию на границе (σ) области (D), т. е. следующую задачу:

$$\begin{cases} Lu(M) = \lambda u(M), & M \in (D), \\ \left(\alpha \cdot u + \beta \cdot \frac{\partial u}{\partial n}\right) \Big|_{\sigma} = 0. \end{cases}$$

Будем предполагать (как обычно бывает в физических задачах), что в граничном условии α , β одного знака и одновременно не равны нулю.

Мы ограничимся случаем, когда область (D) есть интервал (a,b), оператор L имеет вид Lu = Au'' + Bu' + Cu, где u, A, B, C есть функции от аргумента x. Тогда задача Штурма—Лиувилля примет вид

$$\begin{cases} Lu(x) = \lambda u(x), & x \in (a,b), \\ \alpha_1 u(a) - \beta_1 u'(a) = 0, & \text{где} \\ \alpha_2 u(b) + \beta_2 u'(b) = 0, \end{cases} Lu(x) = A(x)u''(x) + B(x)u'(x) + C(x), \\ \alpha_i \cdot \beta_i \ge 0, \quad \alpha_i^2 + \beta_i^2 \ne 0 \quad (i = 1, 2). \end{cases}$$
(1.2)

Свойства собственных функций задачи Штурма – Лиувилля

1. Собственные функции задачи (1.2) ортогональны в пространстве H_{ρ} с весом

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right). \tag{1.3}$$

- 2. Если A > 0, $C \le 0$, то собственные значения $\lambda \le 0$.
- 3. $\lambda = 0$ есть собственное значение, а u = 1 соответствующая собственная функция тогда и только тогда, когда C = 0 и граничные условия имеют вид

$$\begin{cases} u'(a) = 0, \\ u'(b) = 0, \end{cases} \text{ или } \begin{cases} |u(a)| < \infty, \\ u'(b) = 0. \end{cases}$$

4. Любая функция из пространства H_{ρ} разлагается в ряд Фурье по ортогональной системе собственных функций, причем этот ряд сходится к функции абсолютно и равномерно.

Пример 1.4. Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) = 0, y'(l) = 0. Найти вес ортогональности и норму собственных функций. Разложить функцию f(x) = x в ряд Фурье по собственным функциям.

Решение. 1). Имеем оператор вида Ly = Ay'' + By' + Cy, где A = 1, B = 0, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $Ly = \lambda y$ примет вид $y'' = -\mu^2 y$.

2). Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение: $k^2 = -\mu^2$. Его решения $k = \pm \mu i$, а общее решение дифференциального уравнения

$$y = c_1 \cos \mu x + c_2 \sin \mu x.$$

3). Воспользуемся граничными условиями y'(0) = 0, y'(l) = 0. Из граничного условия y'(0) = 0 имеем $y'(x) = (-c_1 \mu \sin \mu x + c_2 \mu \cos \mu x)|_{x=0} = c_2 \mu = 0$. Отсюда или $\mu_0 = 0$ (соответствующая собственная функция $y_0 = 1$), или $c_2 = 0$, $y = c_1 \cos \mu x$. Так как собственные функции — это ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_1 = 1$. Из условия

$$y'(l) = 0$$
 получим $y'(l) = -\mu \sin \mu l = 0$, $\mu l = \pi k$, $\mu_k = \frac{\pi k}{l}$.

Итак, собственные функции $y_k = \cos \mu_k x$, где $\mu_k = \pi k/l$ (k = 0,1,2,...).

В частности, при k = 0 имеем $\mu_0 = 0$, $y_0 = 1$.

4). Вычислим вес ортогональности собственных функций оператора, учитывая, что A = 1, B = 0 для оператора Ly = y'':

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right) = \exp\left(\int 0 dx\right) = e^0 = 1.$$

5). Вычислим нормы собственных функций:

$$||y_k||^2 = (y_k, y_k) = \int_0^l \rho y_k^2(x) dx = \int_0^l \cos^2 \mu_k x dx = \int_0^l \frac{1 + \cos 2\mu_k x}{2} dx = \frac{1}{2} \left(x + \frac{\sin 2\mu_k x}{2\mu_k} \right) \Big|_0^l = \frac{l}{2} \quad (k \neq 0)$$

(здесь мы воспользовались тем, что $\sin 2\mu_k l = \sin 2\pi k = 0$ и $\mu_k \neq 0$ при $k \neq 0$).

При k=0 следует вычислить $\|y_0\|$ отдельно (предыдущими вычислениями нельзя воспользоваться, так как будет деление на $\mu_0=0$):

$$||y_0||^2 = (y_0, y_0) = \int_0^l \rho \cdot y_0^2(x) dx = \int_0^l dx = l.$$

6). Разложим функцию f(x) = x в ряд Фурье по собственным функциям $y_k = \cos \mu_k x$:

$$f(x) = \sum_{k=0}^{\infty} c_k y_k(x)$$
, где $c_k = \frac{(f, y_k)}{(y_k, y_k)}$.

Вычислим скалярное произведение (f, y_k) сначала при $k \neq 0$, применив интегрирование по частям и учитывая, что $\sin \mu_k l = \sin \pi k = 0$, $\cos \mu_k l = \cos \pi k = (-1)^k$:

$$(f, y_k) = \int_0^l \rho \cdot f(x) \cdot y_k(x) dx = \int_0^l x \cdot \cos(\mu_k x) dx = \frac{1}{\mu_k} \left(x \cdot \sin(\mu_k x) \Big|_0^l - \int_0^l \sin(\mu_k x) dx \right) =$$

$$= \frac{1}{\mu_k^2} (\cos \mu_k x) \Big|_0^l = \frac{1}{\mu_k^2} (\cos \mu_k l - 1) = \begin{cases} 0, & k = 2n, \\ -2/\mu_k^2, & k = 2n + 1. \end{cases}$$

Так как
$$(y_k, y_k) = \frac{l}{2}$$
, то $c_k = \frac{(f, y_k)}{(y_k, y_k)} = \begin{cases} 0, & k = 2n, \\ -4/(\mu_k^2 l), & k = 2n + 1. \end{cases}$

При k=0 следует вычислить коэффициент c_k отдельно (предыдущими вычислениями нельзя воспользоваться, так как будет деление на $\mu_0=0$):

$$c_0 = \frac{(f, y_0)}{(y_0, y_0)} = \frac{1}{l} \int_0^l 1 \cdot x \, dx = \frac{l^2}{2l} = \frac{l}{2}.$$

Следовательно, разложение функции f(x) = x в ряд Фурье имеет вид:

$$f(x) = c_0 y_0 + \sum_{n=0}^{\infty} c_{2n+1} y_{2n+1} = \frac{l}{2} - \sum_{n=0}^{\infty} \frac{4}{\mu_{2n+1}^2 l} \cos \mu_{2n+1} x.$$

Пример 1.5. Найти собственные функции оператора Ly = y'', удовлетворяющие граничным условиям y'(0) - y(0) = 0, y'(1) + y(1) = 0. Найти вес ортогональности собственных функций.

Решение. 1). Как и в предыдущем примере, получим

$$y = c_1 \cdot \cos \mu x + c_2 \cdot \sin \mu x .$$

2). Так как $y' = -c_1 \mu \cdot \sin \mu x + c_2 \mu \cdot \cos \mu x$, то граничные условия примут вид:

$$\begin{cases} \mu c_2 - c_1 = 0, \\ \left(-c_1 \mu \cdot \sin \mu + c_2 \mu \cdot \cos \mu \right) + \left(c_1 \cdot \cos \mu + c_2 \cdot \sin \mu \right) = 0 \end{cases} \quad \text{или} \quad \begin{cases} c_1 = \mu c_2, \\ c_2 \left(2 \mu \cdot \cos \mu + \left(1 - \mu^2 \right) \sin \mu \right) = 0. \end{cases}$$

Если $c_2=0$, то $c_1=0$, y(x)=0, но нулевая функция не является собственной функцией. Значит, $c_2\neq 0$. Тогда $2\mu\cdot\cos\mu+\left(1-\mu^2\right)\sin\mu=0$ или $\tan\mu=\frac{2\mu}{1-\mu^2}$. Это

трансцендентное уравнение имеет множество корней μ_k (это можно установить графически). Итак, собственные функции (если положить $c_2 = 1$)

$$y_k = \mu_k \cos \mu_k x + \sin \mu_k x$$
 $(k = 1, 2, ...)$, где μ_k — корни уравнения $\operatorname{tg} \mu = \frac{2\mu}{1 - \mu^2}$.

3). Вес ортогональности собственных функций $\rho = 1$ вычисляется так же, как и в предыдущем примере.

Пример 1.6. Найти собственные функции оператора Ly = y'' - 2y' + 3y, удовлетворяющие граничным условиям y(0) = 0, y(2) = 0. Найти вес ортогональности и норму собственных функций.

Решение. 1. Собственные функции оператора найдем из уравнения

$$y'' - 2y' + 3y = \lambda y. {(1.4)}$$

Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение: $k^2 - 2k + 3 = \lambda$. Его корни $k = 1 \pm \sqrt{\lambda - 2}$. Вид решения уравнения (1.4) зависит от знака числа $\lambda - 2$.

а). Если
$$\lambda - 2 > 0$$
, $\lambda - 2 = \mu^2$, то $k_1 = 1 + \mu$, $k_2 = 1 - \mu$ и $y(x) = c_1 e^{k_1 x} + c_2 e^{k_2 x}$.

Из граничных условий $\begin{cases} y\left(0\right)=0, \\ y\left(2\right)=0 \end{cases}$ получим $\begin{cases} c_1+c_2=0, \\ c_1e^{2k_1}+c_2e^{2k_2}=0. \end{cases}$

Так как определитель системы $\Delta = \begin{vmatrix} 1 & 1 \\ e^{2k_1} & e^{2k_2} \end{vmatrix} \neq 0$, то $c_1 = c_2 = 0$ и y(x) = 0.

Но нулевая функция не является собственной функцией.

б). Если $\lambda - 2 = 0$, то $k_1 = 1$, $k_2 = 1$ и $y(x) = c_1 e^x + c_2 x e^x$.

Из граничных условий $\begin{cases} y(0)=0, \\ y(2)=0 \end{cases}$ получим $\begin{cases} c_1=0, \\ c_1e^2+2c_2e^2=0. \end{cases}$ Тогда $c_1=c_2=0$ и

y(x) = 0. Но нулевая функция не является собственной функцией.

в). Если $\lambda - 2 < 0$, $\lambda - 2 = -\mu^2$, то $k_1 = 1 + \mu i$, $k_2 = 1 - \mu i$ и $y(x) = e^x (c_1 \cos \mu x + c_2 \sin \mu x)$.

Из граничных условий
$$\begin{cases} y\left(0\right)=0, \\ y\left(2\right)=0 \end{cases} \text{ получим } \begin{cases} c_{1}=0, \\ e^{2}\left(c_{1}\cos2\mu+c_{2}\sin2\mu\right)=0 \end{cases} \Rightarrow \begin{cases} c_{1}=0, \\ c_{2}\sin2\mu=0. \end{cases}$$

Если $c_2 = 0$, то y(x) = 0, но нулевая функция не является собственной функцией.

Значит, $c_2 \neq 0$. Тогда $\sin 2\mu = 0 \implies 2\mu_k = \pi k$, $\mu_k = \frac{\pi k}{2}$ и собственные функции (если положить $c_2 = 1$) равны $y_k(x) = e^x \sin \mu_k x$ (k = 1, 2, 3...).

2). Вычислим вес ортогональности собственных функций оператора, учитывая, что A = 1, B = -2 для оператора Ly = y'' - 2y' + 3y:

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right) = \exp\left(\int -2 dx\right) = e^{-2x}.$$

3). Вычислим нормы собственных функций:

$$\|y_k\|^2 = (y_k, y_k) = \int_0^l \rho \cdot y_k^2(x) dx = \int_0^2 e^{-2x} \left(e^x \sin \mu_k x \right)^2 dx = \int_0^2 \frac{1 + \cos 2\mu_k x}{2} dx = \frac{1}{2} \left(x + \frac{\sin 2\mu_k x}{2\mu_k} \right) \Big|_0^2 = 1$$
(здесь мы воспользовались тем, что $\sin 4\mu_k = \sin 2\pi k = 0$).

Пример 1.7. Найти собственные функции оператора $Ly = x^2y'' + xy'$, удовлетворяющие граничным условиям y(1) = 0, y'(3) = 0. Найти вес ортогональности и норму собственных функций.

Решение. 1). Имеем оператор вида Ly = Ay'' + By' + Cy, где $A = x^2$, B = x, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Запишим отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $Ly = \lambda y$ примет вид $x^2y'' + xy' = -\mu^2y$.

2). Это уравнение является уравнением Эйлера. Его решение будем искать в виде $y = x^s$. После подстановки в уравнение получим $x^2s(s-1)x^{s-2} + xs\,x^{s-1} = -\mu^2x^s$ и сократим на x^s . Тогда

$$s(s-1)+s=-\mu^2$$
, $s^2=-\mu^2$, $s=\pm i\mu$;
 $y=x^S=x^{\pm i\mu}=e^{\ln x^{\pm i\mu}}=e^{\pm i\mu \ln x}=\cos(\mu \ln x)\pm i\sin(\mu \ln x)$.

Действительная и мнимая часть получившегося решения уравнения Эйлера, т.е. функции $\cos(\mu \ln x)$, $\sin(\mu \ln x)$ также будут решениями этого уравнения, причем линейно независимыми. Поэтому общее решение будет иметь вид

$$y = c_1 \cos(\mu \ln x) + c_2 \sin(\mu \ln x).$$

3). Воспользуемся граничными условиями y(1) = 0, y'(3) = 0.

$$\begin{cases} y(1) = 0 = c_1, \\ y'(3) = 0 = -c_1 \sin(\mu \ln 3) \cdot \frac{1}{3} + c_2 \cos(\mu \ln 3) \cdot \frac{1}{3} \end{cases} \Rightarrow \begin{cases} c_1 = 0, \\ c_2 \cos(\mu \ln 3) = 0. \end{cases}$$

Отсюда или $c_2 = 0$ (но тогда y(x) = 0, а собственные функции — это ненулевые функции), или $\cos(\mu \ln 3) = 0$. Из этого условия получим

$$\cos(\mu \ln 3) = 0 \implies \mu \ln 3 = \frac{\pi}{2} (2k+1), \quad \mu_k = \frac{\pi}{2 \ln 3} (2k+1) \quad (k = 0,1,2,...).$$

Итак, собственные функции $y_k = c_2 \sin(\mu_k \ln x)$, где $\mu_k = \frac{\pi}{2 \ln 3} (2k+1)$ (k=0,1,2,...).

Так как собственные функции определяются с точностью до постоянного множителя, то можно положить c_2 =1.

4). Вычислим вес ортогональности собственных функций оператора, учитывая, что $A = x^2$, B = x для оператора $Ly = x^2y'' + xy'$:

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right) = \frac{1}{x^2} \exp\left(\int \frac{1}{x} dx\right) = \frac{1}{x^2} \exp\left(\ln x\right) = \frac{1}{x}.$$

5). Вычислим нормы собственных функций:

$$||y_k||^2 = \int_0^l \rho \cdot y_k^2(x) dx = \int_0^3 \frac{1}{x} \cdot \sin^2(\mu_k \ln x) dx = \int_0^3 \sin^2(\mu_k \ln x) d\underbrace{(\ln x)}_{=t} =$$

$$= \int_0^{\ln 3} \frac{1 - \cos 2\mu_k t}{2} dt = \frac{1}{2} \left(t - \frac{\sin 2\mu_k t}{2\mu_k} \right) \Big|_0^{\ln 3} = \frac{\ln 3}{2} - \frac{\sin \pi (2k+1)}{4\mu_k} = \frac{\ln 3}{2}.$$

Пример 1.8. Найти собственные функции оператора $Ly = y'' + \frac{2}{x}y'$, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(l) = 0. Найти вес ортогональности и норму собственных функций.

Решение. 1). Имеем оператор вида Ly = Ay'' + By' + Cy, где A = 1, $B = \frac{2}{x}$, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Запишим отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $Ly = \lambda y$ примет вид

$$y'' + \frac{2}{x}y' = -\mu^2 y$$
 или $\underbrace{xy'' + 2y'}_{=(xy)''} = -\mu^2(xy)$.

Обозначив $x\,y=z\,,$ получим уравнение $z''=-\mu^2z\,;$ его общее решение $z=c_1\cos\mu x+c_2\sin\mu x\,.$ Тогда

$$y = \frac{z}{x} = c_1 \frac{\cos \mu x}{x} + c_2 \frac{\sin \mu x}{x}.$$

2). Воспользуемся граничными условиями $|y(0)| < \infty$, y(l) = 0. Так как

$$\lim_{x \to 0} \frac{\cos \mu x}{x} = \infty, \quad \lim_{x \to 0} \frac{\sin \mu x}{x} = \mu, \quad |y(0)| < \infty \quad \Rightarrow \quad c_1 = 0, \quad y = c_2 \frac{\sin \mu x}{x}.$$

Из граничного условия y(l) = 0 имеем $y(l) = c_2 \frac{\sin \mu l}{l} = 0$. Отсюда или $c_2 = 0$ (но тогда y(x) = 0, а собственные функции — это ненулевые функции), или $\sin(\mu l) = 0$. Из этого условия получим

$$\mu_k = \frac{\pi k}{l}, \quad y_k = c_2 \frac{\sin \mu_k x}{x} \quad (k = 1, 2, 3, ...).$$

Так как собственные функции определяются с точностью до постоянного множителя, то можно положить c_2 =1.

3). Вычислим вес ортогональности собственных функций оператора, учитывая, что $A=1,\ B=\frac{2}{r}$ для оператора $Ly=y''+\frac{2}{r}y'$:

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right) = \exp\left(\int \frac{2}{x} dx\right) = e^{2\ln x} = \left(e^{\ln x}\right)^2 = x^2.$$

4). Вычислим нормы собственных функций:

$$||y_k||^2 = \int_0^l \rho \cdot y_k^2(x) dx = \int_0^l x^2 \cdot \frac{1}{x^2} \sin^2(\mu_k x) dx = \int_0^l \sin^2(\mu_k x) dx = \frac{l}{2}.$$

2. Специальные функции

2.1. Ортогональные многочлены

Системы ортогональных многочленов Лежандра, Эрмита, Лагерра, Чебышева и т.д. можно получить, если применить процесс ортогонализации к линейно независимой системе функций 1, t, t^2 ,..., t^n ,... в пространстве L_2 [-1; 1] с весом $\rho = 1$, в пространстве L_2^{ρ} ($-\infty$, ∞) с весом $\rho = e^{-x^2}$, в пространстве L_2^{ρ} (0, ∞) с весом $\rho = e^{-x}$, в пространстве L_2^{ρ} (0, ∞) с весом $\rho = 1/\sqrt{1-x^2}$ и т.д.

Свойства многочленов Лежандра и Чебышева приведены в табл. П.1.1; свойства многочленов Эрмита и Лагерра приведены в табл. П. 1.2.

Пример 2.1. Найти многочлены Чебышева $T_3(x)$, $T_4(x)$.

Решение. Воспользуемся рекуррентным соотношением для многочленов Чебышева $T_n(x)$ (табл. П.1.1):

$$T_{n+1}(x) = 2 x T_n(x) - T_{n-1}(x)$$
.

Положив n = 2, n = 3, получим

$$T_3(x) = 2xT_2(x) - T_1(x), \quad T_4(x) = 2xT_3(x) - T_2(x).$$

Из табл. П.1.1 $T_1(x) = x$, $T_2(x) = 2x^2 - 1$. Тогда

$$T_3(x) = 2xT_2(x) - T_1(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x,$$

 $T_4(x) = 2xT_3(x) - T_2(x) = 2x(4x^3 - 3x) - (2x^2 - 1) = 8x^4 - 8x^2 + 1.$

Пример 2.2. Разложить в ряд по многочленам Чебышева $T_n(x)$ функцию

$$f(x) = 8x^3 - 2x^2 - 2x + 7$$
. Вычислить интегралы $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) T_n(x) dx$ при $n = 3, n = 8$.

Pешение. Представим функцию f(x) в виде

$$f(x) = a \cdot T_3(x) + b \cdot T_2(x) + c \cdot T_1(x) + d \cdot T_0(x)$$
.

Многочлены $T_4(x)$, $T_5(x)$,... в эту сумму не включаются, так как имеют степень выше третьей. Подставим выражения для f(x), $T_3(x)$, $T_2(x)$, $T_1(x)$, $T_0(x)$:

$$8x^3 - 2x^2 - 2x + 7 = a \cdot (4x^3 - 3x) + b \cdot (2x^2 - 1) + c \cdot x + d \cdot 1.$$

Сравнивая коэффициенты при одинаковых степенях x, получим:

при
$$x^3$$
: $8 = 4a$ $\Rightarrow a = 2$,

при
$$x^2$$
: $-2 = 2b$ $\Rightarrow b = -1$

при
$$x$$
: $-2 = -3a + c \Rightarrow c = 4$,

при
$$x^0$$
: $7 = -b + d \implies d = 6$.

Тогда $f(x) = 2T_3(x) - T_2(x) + 4T_1(x) + 6T_0(x)$.

Многочлены Чебышева ортогональны в пространстве $L_2^{\rho}(-1;1)$ с весом $\rho = \frac{1}{\sqrt{1-x^2}}$ и в этом пространстве $(f,g) = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) g(x) dx$. Поэтому $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) T_n(x) dx = \left(f(x), T_n(x)\right) = \left(2T_3(x) - T_2(x) + 4T_1(x) + 6T_0(x), T_n(x)\right) = 2\left(T_3(x), T_n(x)\right) - \left(T_2(x), T_n(x)\right) + 4\left(T_1(x), T_n(x)\right) + 6\left(T_0(x), T_n(x)\right).$

Из условия ортогональности многочленов Чебышева

$$(T_n(x), T_3(x)) = 0$$
 при $n \neq 3$, $(T_n(x), T_8(x)) = 0$ при $n \neq 8$.

Поэтому

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) T_3(x) dx = 2(T_3(x), T_3(x)) - \underbrace{(T_2(x), T_3(x))}_{=0} + 4\underbrace{(T_1(x), T_3(x))}_{=0} + 6\underbrace{(T_0(x), T_3(x))}_{=0} = 0$$

$$= 2 ||T_3(x)||^2 = 2 \cdot \frac{\pi}{2} = \pi;$$

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) T_8(x) dx = 2\underbrace{\left(T_3(x), T_8(x)\right)}_{=0} - \underbrace{\left(T_2(x), T_8(x)\right)}_{=0} + 4\underbrace{\left(T_1(x), T_8(x)\right)}_{=0} + 6\underbrace{\left(T_0(x), T_8(x)\right)}_{=0} = 0.$$

Пример 2.3. Разложить функцию $f(x) = \operatorname{ch} x$ в ряд по многочленам Эрмита $H_n(x)$.

Вычислить интегралы $\int\limits_0^\infty e^{-x^2} \operatorname{ch} x \cdot H_9(x) dx$, $\int\limits_0^\infty e^{-x^2} \operatorname{ch} x \cdot H_4(x) dx$.

Решение. Функция $f(x) = \cosh x$ не является многочленом, поэтому метод решения, используемый в задаче 2.2, здесь неприменим. Представим функцию $f(x) = \cosh x$ в виде $ch x = \frac{e^x + e^{-x}}{2}$ и воспользуемся производящей функцией для многочленов Эрмита $e^{-t^2+2tx} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$ при t = 1/2 и при t = -1/2:

$$e^{-1/4} \cdot e^x = \sum_{n=0}^{\infty} H_n(x) \frac{(1/2)^n}{n!}, \qquad e^{-1/4} \cdot e^{-x} = \sum_{n=0}^{\infty} H_n(x) \frac{(-1/2)^n}{n!}.$$

Складывая эти два равенства, получим

$$e^{-1/4} \cdot \left(e^{x} + e^{-x}\right) = \sum_{n=0}^{\infty} H_{n}(x) \frac{\left(1/2\right)^{n} + \left(-1/2\right)^{n}}{n!} =$$

$$= \sum_{k=0}^{\infty} H_{2k}(x) \frac{\left(1/2\right)^{2k} + \left(-1/2\right)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} H_{2k+1}(x) \underbrace{\frac{\left(1/2\right)^{2k+1} + \left(-1/2\right)^{2k+1}}{(2k+1)!}}_{=0} = \sum_{k=0}^{\infty} \frac{2H_{2k}(x)}{2^{2k}(2k)!};$$

$$= ch x = \frac{e^{x} + e^{-x}}{2} = e^{1/4} \cdot \sum_{k=0}^{\infty} \frac{H_{2k}(x)}{2^{2k}(2k)!}.$$

Многочлены Эрмита ортогональны в пространстве $L_2^{\rho}(-\infty,\infty)$, $\rho = e^{-x^2}$ и в этом пространстве $(f,g) = \int_{-\infty}^{\infty} e^{-x^2} f(x) g(x) dx$. Поэтому

$$\int_{-\infty}^{\infty} e^{-x^2} \operatorname{ch} x \cdot H_9(x) dx = \left(\operatorname{ch} x, H_9(x) \right) = e^{1/4} \cdot \sum_{k=0}^{\infty} \frac{\left(H_{2k}(x), H_9(x) \right)}{2^{2k} (2k)!} = 0,$$

$$\int_{-\infty}^{\infty} e^{-x^2} \operatorname{ch} x \cdot H_4(x) dx = \left(\operatorname{ch} x, H_4(x) \right) = e^{1/4} \cdot \sum_{k=0}^{\infty} \frac{\left(H_{2k}(x), H_4(x) \right)}{2^{2k} (2k)!} = e^{1/4} \cdot \frac{\left\| H_4(x) \right\|^2}{2^4 \cdot 4!} = e^{1/4} \cdot \sqrt{\pi}.$$

Здесь мы воспользовались ортогональностью многочленов Эрмита и нормой многочленов Эрмита из табл. П.1.2:

$$(H_{2k}, H_9) = 0$$
, $(H_{2k}, H_4) = 0$ при $2k \neq 4$, $(H_4, H_4) = ||H_4||^2 = 2^4 4! \sqrt{\pi}$.

Пример 2.4. Разложить в ряд по многочленам Лежандра функцию $f(x) = \frac{2}{\sqrt{5-4x}}$. Вычислить интеграл $\int_{1}^{x} f(x) P_5(x) dx$.

Решение. Воспользуемся производящей функцией для многочленов Лежандра

$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, |t| < 1.$$

При t = 1/2 получим

$$\frac{1}{\sqrt{\frac{5}{4} - x}} = \sum_{n=0}^{\infty} P_n(x) \left(\frac{1}{2}\right)^n \implies f(x) = \frac{2}{\sqrt{5 - 4x}} = \frac{1}{\sqrt{\frac{5}{4} - x}} = \sum_{n=0}^{\infty} P_n(x) \left(\frac{1}{2}\right)^n.$$

Многочлены Лежандра ортогональны в пространстве L_2^{ρ} [-1;1], ρ =1 и в этом пространстве $(f,g) = \int_{-1}^{1} f(x) g(x) dx$. Поэтому

$$\int_{-1}^{1} f(x) P_5(x) dx = (f(x), P_5(x)) = \sum_{n=0}^{\infty} \frac{(P_n(x), P_5(x))}{2^n} = \frac{(P_5(x), P_5(x))}{2^5} = \frac{\|P_5(x)\|^2}{2^5} = \frac{2/11}{32} = \frac{1}{176}.$$

Здесь мы воспользовались ортогональностью многочленов Лежандра и нормой многочленов Лежандра из табл. П.1.3: $\|P_n(x)\|^2 = \frac{2}{2n+1}$.

Пример 2.5. Найти собственные функции и собственные значения оператора $Ly = (1-x^2)y'' - 2xy'$. Разложить в ряд Фурье по этим собственным функциям функцию $f(x) = \begin{cases} -1, & x \in [-1;0), \\ 1, & x \in (0;1]. \end{cases}$

Решение. Собственными функциями оператора $Ly = (1-x^2)y'' - 2xy'$ являются (см. табл. П.1.1) полиномы Лежандра $P_n(x)$, а соответствующие собственные значения $\lambda_n = -n(n+1)$. Полиномы Лежандра $P_n(x)$ ортогональны на отрезке [-1;1] с весом $\rho = 1$ (см. табл. П.1.1).

Функция f(x) не является многочленом, поэтому метод решения, используемый в задаче 2.2, здесь неприменим. Представим функцию f(x) рядом Фурье по ортогональной системе $\{P_n(x)\}_{n=0}^{\infty}$ и вычислим коэффициенты Фурье:

$$f(x) = \sum_{k=0}^{\infty} c_k P_k(x)$$
, где $c_k = \frac{(f, P_k)}{(P_k, P_k)}$, $(P_k, P_k) = \|P_k(x)\|^2 = \frac{2}{2k+1}$.

Вычислим скалярное произведение (f, P_k) :

$$(f, P_k) = \int_{-1}^{1} \rho \cdot f(x) P_k(x) dx = -\int_{-1}^{0} P_k(x) dx + \int_{0}^{1} P_k(x) dx.$$

Для вычисления получившихся интегралов воспользуемся рекуррентным соотношением $(2k+1)P_k(x) = P_{k+1}^{'}(x) - P_{k-1}^{'}(x)$. Тогда

$$\begin{split} & (f,P_{k}) = -\frac{1}{2k+1} \int_{-1}^{0} \left[P_{k+1}'(x) - P_{k-1}'(x) \right] dx + \frac{1}{2k+1} \int_{0}^{1} \left[P_{k+1}'(x) - P_{k-1}'(x) \right] dx = \\ & = \frac{-1}{2k+1} \left[P_{k+1}(x) - P_{k-1}(x) \right] \Big|_{-1}^{0} + \frac{1}{2k+1} \left[P_{k+1}(x) - P_{k-1}(x) \right] \Big|_{0}^{1} = \\ & = \frac{1}{2k+1} \left[P_{k+1}(1) - P_{k-1}(1) - 2P_{k+1}(0) + 2P_{k-1}(0) + P_{k+1}(-1) - P_{k-1}(-1) \right], \\ & c_{k} = \frac{(f,P_{k})}{(P_{k},P_{k})} = \frac{1}{2} \left[P_{k+1}(1) - P_{k-1}(1) - 2P_{k+1}(0) + 2P_{k-1}(0) + P_{k+1}(-1) - P_{k-1}(-1) \right]. \end{split}$$

Учитывая (см. табл. П.1.1), что

$$P_n(1) = 1$$
, $P_n(-1) = (-1)^n$, $P_{2n+1}(0) = 0$, $P_{2n}(0) = (-1)^n \frac{(2n-1)!!}{(2n)!!}$ $(n > 0)$,

рассмотрим два случая:

$$k = 2n: \quad c_{2n} = \frac{1}{2} \left[\underbrace{P_{2n+1}(1) - P_{2n-1}(1)}_{=0} - \underbrace{2P_{2n+1}(0) + 2P_{2n-1}(0)}_{=0} + \underbrace{P_{2n+1}(-1) - P_{2n-1}(-1)}_{=0} \right] = 0;$$

$$k = 2n+1: \quad c_{2n+1} = \frac{1}{2} \left[\underbrace{P_{2n+2}(1) - P_{2n}(1)}_{=0} - 2P_{2n+2}(0) + 2P_{2n}(0) + \underbrace{P_{2n+2}(-1) - P_{2n}(-1)}_{=0} \right] = P_{2n}(0) - P_{2n+2}(0) =$$

$$= (-1)^n \frac{(2n-1)!!}{(2n)!!} - (-1)^{n+1} \frac{(2n+1)!!}{(2n+2)!!} = (-1)^n \frac{(2n-1)!!}{(2n)!!} \left(1 + \frac{2n+1}{2n+2}\right) = (-1)^n \frac{(2n-1)!!(4n+3)}{(2n+2)!!}.$$

Эти вычисления справедливы при n > 0, поэтому коэффициенты c_0 , c_1 вычислим

отдельно:
$$c_0 = \frac{\left(f, P_0\right)}{\left(P_0, P_0\right)}, \quad \left(f, P_0\right) = \int\limits_{-1}^0 -1 \, dx + \int\limits_0^1 1 \, dx = 0 \implies c_0 = 0;$$

$$c_1 = P_0\left(0\right) - P_2\left(0\right) = 1 + \frac{1}{2} = \frac{3}{2}.$$

Итак, окончательно имеем

$$f(x) = \sum_{k=0}^{\infty} c_k P_k(x) = \frac{3}{2} P_1(x) + \sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!(4n+3)}{(2n+2)!!} P_{2n+1}(x).$$

2.2. Цилиндрические функции

В приложениях используются не только ортогональные многочлены, но и ортогональные функции. К ним относятся ортогональные функции Лежандра, Эрмита (см. табл. П.1.3), цилиндрические функции или функции Бесселя (см. табл. П.1.4).

Пример 2.6. Вычислить значения функций Бесселя $J_2(4)$, $J_3(4)$, $J_2'(4)$.

Решение. Воспользуемся рекуррентными соотношениями для функций Бесселя (табл. П.1.4):

$$\frac{2p}{x}J_{p}(x) = J_{p-1}(x) + J_{p+1}(x), \qquad 2J_{p}'(x) = J_{p-1}(x) - J_{p+1}(x).$$

В первом из этих соотношений при x = 4 положим сначала p = 1, потом p = 2;

во втором из этих соотношений положим x = 4 и p = 1:

$$\frac{1}{2}J_1(4) = J_0(4) + J_2(4), \quad J_2(4) = J_1(4) + J_3(4), \quad 2J_2'(4) = J_1(4) - J_3(4).$$

Значения функций $J_0(4)$, $J_1(4)$ возьмем из табл. П.1.4:

$$J_0(4) = -0.3971$$
, $J_1(4) = -0.0660$.

Тогда
$$J_2(4) = \frac{1}{2}J_1(4) - J_0(4) = -0,0330 + 0,3971 = 0,3641,$$

$$J_3(4) = J_2(4) - J_1(4) = 0,3641 + 0,0660 = 0,4301,$$

 $J_2'(4) = \frac{J_1(4) - J_3(4)}{2} = \frac{-0,0660 - 0,4301}{2} = -0,2480.$

Пример 2.7. Для оператора $Ly = y'' + \frac{1}{x}y'$:

- а) найти собственные функции, удовлетворяющие граничным условиям $|y(0)| < \infty$, y(3) + 5y'(3) = 0;
- б) указать вес ортогональности и вычислить нормы этих собственных функций,
- в) разложить функцию $f(x) = x^2$ на отрезке [0;3] в ряд Фурье по этим собственным функциям;
- г) вычислить три первых коэффициента ряда Фурье и сравнить частичную сумму ряда Фурье $S_3(1)$ со значением функции f(1). Решение.
- 1). Оператор $Ly = y'' + \frac{1}{x}y'$ имеет вид Ly = Ay'' + By' + Cy, где A = 1, $B = \frac{1}{x}$, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$ или $\lambda = -\mu^2$. Тогда уравнение для отыскания собственных функций $Ly = \lambda y$ примет вид $y'' + \frac{1}{x}y' = -\mu^2 y$; умножив его на x^2 , получим

$$x^2y''(x) + xy'(x) + \mu^2x^2y(x) = 0$$
.

Это есть уравнение Бесселя порядка p = 0. Его общее решение имеет вид

$$y(x) = c_1 J_0(\mu x) + c_2 N_0(\mu x)$$
.

По условию функция y(x) ограничена в нуле, функция $N_0(\mu x)$ не ограничена в нуле; поэтому, чтобы получить ограниченное в нуле решение, следует положить $c_2=0$. Кроме того, можно положить $c_1=1$, так как собственные функции определяются с точностью до постоянного множителя. Тогда $y(x)=J_0(\mu x)$.

Из граничного условия y(3)+5y'(3)=0 получим

$$J_0(3\mu) + 5\mu J_0'(3\mu) = 0 \Rightarrow \frac{3}{5}J_0(3\mu) + 3\mu J_0'(3\mu) = 0.$$
 (2.1)

Воспользуемся рекуррентным соотношением $(x^{-p}J_p(x))' = -x^{-p}J_{p+1}(x)$, которое при p=0 примет вид $J_0'(x) = -J_1(x)$. Тогда из уравнения (2.1) получим

$$0.6 J_0(3\mu) - 3\mu J_1(3\mu) = 0.$$
 (2.2)

Уравнение (2.2) имеет множество корней μ_k (k =1,2,3,...), которые приведены в табл. П.1.4 (при α = 0,6):

 $3\mu_1=1,0184, 3\mu_2=3,9841, 3\mu_3=7,1004 \Rightarrow \mu_1=0,339, \mu_2=1,3283, \mu_3=2,334.$ (2.3) Соответствующие собственные функции $y_k\left(x\right)=J_0\left(\mu_k\,x\right)\,\left(k=1,2,3,\ldots\right).$

2). Вес ортогональности x и нормы этих собственных функций приведены в табл. П.1.4; при этом учтем соотношения (2.2):

$$||y_k||^2 = ||J_0(\mu_k x)||^2 = \frac{l^2}{2} \left[J_0'^2(\mu_k l) + J_0^2(\mu_k l) \right] = \frac{9}{2} \left[J_1^2(3\mu_k) + (5\mu_k)^2 J_1^2(3\mu_k) \right] \Rightarrow$$

$$\Rightarrow$$
 $||y_k||^2 = \frac{9}{2}J_1^2(3\mu_k)(1+25\mu_k^2).$

3). Разложим функцию $f(x) = x^2$ в ряд Фурье по функциям $y_k(x) = J_0(\mu_k x)$:

$$f(x) = \sum_{k=1}^{\infty} c_k y_k(x)$$
, где $c_k = \frac{(f, y_k)}{(y_k, y_k)}$ — коэффициенты Фурье.

Вычислим скалярное произведение (f, y_k) , учитывая вес ортогональности x функций $y_k(x)$:

$$(f, y_k) = \int_0^3 x f(x) y_k(x) dx = \int_0^3 x^3 J_0(\mu_k x) dx = \begin{vmatrix} \mu_k x = s \\ dx = \frac{d s}{\mu_k} \end{vmatrix} = \frac{1}{\mu_k} \int_0^{3\mu_k} s^3 J_0(s) ds.$$

Воспользуемся формулой интегрирования по частям и первым рекуррентным соотношением $(x^p J_p(x))' = x^p J_{p-1}(x)$ для функций Бесселя при p=1 и p=2 (табл. П.1.4). Тогда

$$(f, y_k) = \frac{1}{\mu_k^4} \int_0^{3\mu_k} s^3 J_0(s) ds = \frac{1}{\mu_k^4} \int_0^{3\mu_k} s^2 \cdot \underbrace{s J_0(s)}_{=(s J_1(s))'} ds = \frac{1}{\mu_k^4} \left[s^3 J_1(s) \Big|_0^{3\mu_k} - 2 \int_0^{3\mu_k} \underbrace{s^2 J_1(s)}_{=(s^2 J_2(s))'} ds \right] = \frac{1}{\mu_k^4} \left[27 \mu_k^3 J_1(3\mu_k) - 18 \mu_k^2 J_2(3\mu_k) \right].$$

Используя третье рекуррентное соотношение при p=1 (табл. П.1.4) $\frac{2}{x}J_1(x)=J_0(x)+J_2(x)$ и соотношение (2.1), получим :

$$J_{2}(3\mu_{k}) = \frac{2}{3\mu_{k}} J_{1}(3\mu_{k}) - J_{0}(3\mu_{k}) = \frac{2}{3\mu_{k}} J_{1}(3\mu_{k}) - 5\mu_{k} J_{1}(3\mu_{k}) = \frac{2-15\mu_{k}^{2}}{3\mu_{k}} J_{1}(3\mu_{k}),$$

$$(f, y_{k}) = \frac{9}{\mu_{k}^{4}} \left[3\mu_{k}^{3} \cdot J_{1}(3\mu_{k}) - 2\mu_{k}^{2} \frac{2-15\mu_{k}^{2}}{3\mu_{k}} J_{1}(3\mu_{k}) \right] = \frac{3(39\mu_{k}^{2} - 4)}{\mu_{k}^{3}} J_{1}(3\mu_{k}).$$

$$c_{k} = \frac{(f, y_{k})}{(y_{k}, y_{k})} = \frac{3(39\mu_{k}^{2} - 4) \cdot J_{1}(3\mu_{k}) / \mu_{k}^{3}}{(25\mu_{k}^{2} + 1) \cdot J_{1}(3\mu_{k})} = \frac{2(39\mu_{k}^{2} - 4)}{3\mu_{k}^{3}(25\mu_{k}^{2} + 1) \cdot J_{1}(3\mu_{k})},$$

$$f(x) = \sum_{k=1}^{\infty} c_{k} y_{k}(x) = \sum_{k=1}^{\infty} c_{k} J_{0}(\mu_{k} x).$$

$$(2.4)$$

4). Для вычисления первых трех коэффициентов Фурье c_1, c_2, c_3 воспользуемся соотношениями (2.3)

 $3\mu_1=1,0184,\ 3\mu_2=3,9841,\ 3\mu_3=7,1004 \Rightarrow \mu_1=0,339,\ \mu_2=1,3283,\ \mu_3=2,334$ и таблицей табл. П.1.4 значений функций $J_0(x),J_1(x)$:

$$J_0(\mu_1) = 0,970, \quad J_0(\mu_2) = 0,598, \quad J_0(\mu_3) = 0,034,$$

 $J_1(3\mu_1) = 0,443, \quad J_1(3\mu_2) = -0,062, \quad J_1(3\mu_3) = 0,025.$

Используя формулу (2.4) $c_k = \frac{2(39\mu_k^2 - 4)}{3\mu_k^3(25\mu_k^2 + 1) \cdot J_1(3\mu_k)}$, вычислим коэффициенты

$$c_1 = 4,826, \quad c_2 = -6,597, \quad c_3 = 3,057$$

и частичную сумму ряда Фурье $S_3(1) = c_1 J_0(\mu_1) + c_2 J_0(\mu_2) + c_3 J_0(\mu_3) = 0,845$.

С увеличением числа слагаемых в частичной сумме $S_n(1)$ ряда Фурье она все меньше будет отличаться от значения функции f(1) = 1.

3. Постановка простейших задач математической физики

Многие физические процессы (распространения тепла, колебаний струны, электромагнитных колебаний и др.) описываются уравнениями в частных производных. Эти уравнения обычно выводят при условии некоторой идеализации реального процесса.

3.1. Задача теплопроводности

Пусть внутри тела возникает или поглощается тепло, например, при прохождении тока, вследствие химической реакции и т.д. Уравнение, описывающее распространение тепла, называют уравнением теплопроводности. Оно имеет вид

$$c\gamma \frac{\partial u}{\partial t} = \operatorname{div}(p \cdot \operatorname{grad} u) + F(M, t). \tag{3.1}$$

Здесь u = u(M,t) — температура тела в точке M в момент времени t, c — коэффициент теплоемкости, p – коэффициент теплопроводности, F(M,t) – плотность тепловых источников.

Замечания

1. Если тело – *однородное*, то коэффициенты c, p, γ постоянны и уравнение

1. Если тело – *однородное*, то коэффициенты
$$c$$
, p , γ постоянны и уравнение (3.1) примет вид $\frac{\partial u}{\partial t} = \frac{p}{c\gamma} \operatorname{div}(\operatorname{grad} u) + \frac{F(M,t)}{c\gamma}$, или
$$\frac{\partial u}{\partial t} = a^2 \Delta u + f,$$
 (3.2)

где $\Delta u = \operatorname{div}(\operatorname{grad} u) - \operatorname{oneparop} \operatorname{Лапласа}, \ a^2 = \frac{p}{cv}, \ f = \frac{F}{cv}$.

- 2. Вид оператора Лапласа в различных системах координат:
 - в прямоугольной системе координат

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2};$$
(3.3)

в цилиндрической системе координат

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \rho^2} + \frac{\partial^2 u}{\partial z^2}; \tag{3.4}$$

в сферической системе координат

$$\Delta u = \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} \right). \tag{3.5}$$

3. В однородном и одномерном случае (для стержня) уравнение теплопроводности примет вид

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t). \tag{3.6}$$

4. Если на поверхности однородного стержня происходит теплообмен с окружающей средой по закону Ньютона, то уравнение теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + h(u - \theta) + f(x, t),$$
(3.7)

где θ – температура окружающей среды, h – коэффициент теплообмена.

5). Уравнение типа (3.1) описывает также процесс диффузии, процесс фильтрации жидкости и газа в пористой среде (например, фильтрации нефти и газа в подземных песчаниках).

При описании конкретного физического процесса задают распределение температуры в начальный момент времени (начальное условие) и тепловой режим на границе (граничные условия).

Начальное условие

Задана температура в начальный момент времени: $u(M, t)|_{t=0} = \varphi(M)$.

$$\left| u(M,t) \right|_{t=0} = \varphi(M).$$

Типы граничных условий

1. На границе (σ) поддерживается заданная температура:

$$u(M,t)|_{(\sigma)} = \psi(M,t).$$
(3.8)

2. На границу (σ) подается тепловой поток плотности q:

$$-p\frac{\partial u}{\partial n}\Big|_{(\sigma)} = q. \tag{3.9}$$

3. Граница (σ) теплоизолирована (т.е. q = 0):

$$\left. \frac{\partial u}{\partial n} \right|_{(\sigma)} = 0. \tag{3.10}$$

4. На границе (σ) происходит теплообмен с окружающей средой температуры θ по закону Ньютона:

$$-p\frac{\partial u}{\partial n}\Big|_{(\sigma)} = h\Big(u\Big|_{(\sigma)} - \theta\Big). \tag{3.11}$$

Замечание. Если фигура одномерная, т.е. отрезок [a,b], то граница (σ) состоит из двух точек x=a, x=b.

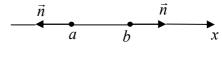


Рис.1

При записи граничного условия следует учитывать (рис. 1), что

$$\frac{\partial u}{\partial n} = -\frac{\partial u}{\partial x}$$
 при $x = a$, $\frac{\partial u}{\partial n} = +\frac{\partial u}{\partial x}$ при $x = b$.

Пример 3.1. Записать математическую постановку следующей задачи: стенки однородного стержня и конец x = 0 теплоизолированы, на конце стержня x = l поддерживается температура u_0 , в начальный момент температура была g(x).

Уравнение теплопроводности для однородного стержня имеет вид: $u_{tt} = a^2 u_{xx}$. Конец x=0 теплоизолирован, т.е. $u_x|_{x=0}=0$. На конце стержня x=l поддерживается температура u_0 , т.е. $u\mid_{x=l}=u_0$. В начальный момент температура была g(x), т.е. $u\mid_{t=0}=g(x)$. Итак, математическая постановка задачи имеет вид

$$\begin{cases} u_t = a^2 u_{xx}, \\ u_x \big|_{x=0} = 0, \quad u \mid_{x=l} = 0, \\ u \big|_{t=0} = g(x). \end{cases}$$

Пример 3.2. Записать математическую постановку следующей задачи: в бесконечном однородном круговом цилиндре радиусом R боковая поверхность поддерживается при постоянной температуре u_0 . Начальная температура внутри цилиндра равна заданной функции $g(\rho)$, где ρ – расстояние от точки до оси цилиндра.

Распределение тепла описывается уравнением теплопроводности

$$u_t = a^2 \Delta u$$
, где $\Delta u = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho}$.

Оператор Лапласа записан в цилиндрической системе координат ρ, φ, z , причем учтено, что функция u является функцией только переменных ρ, t , так как условия задачи не зависят от φ, z .

Точка $\rho=0$ является особой точкой оператора Лапласа, поэтому в этой точке следует потребовать ограниченности функции: $\left|u_{\rho=0}\right|<\infty$. На боковой поверхности цилиндра $\rho=R$ и температура $u\left|_{\rho=R}=u_{0}\right|$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_{t} = a^{2} \Delta u, & \Delta u = \frac{\partial^{2} u}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial u}{\partial \rho}, \\ \left| u_{\rho=0} \right| < \infty, & u \Big|_{\rho=R} = u_{0}, \\ u \Big|_{t=0} = g(\rho). \end{cases}$$

Пример 3.3. Записать математическую постановку следующей задачи: в однородном шаре радиусом R начиная с момента t=0 действует источник тепла с постоянной плотностью Q. На поверхности шара происходит теплообмен по закону Ньютона с окружающей средой температуры u_0 . Начальная температура внутри шара равна нулю.

Распределение тепла в шаре с действующим внутри источником тепла описывается уравнением теплопроводности вида (3.2):

$$u_t = a^2 \Delta u + \frac{Q}{c\gamma}$$
, где $\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r}$.

Оператор Лапласа записан в сферической системе координат r, θ, φ , причем учтено, что функция u является функцией только переменных r, t, так как условия задачи не зависят от θ, φ .

Точка r=0 является особой точкой оператора Лапласа, поэтому в этой точке следует потребовать ограниченности функции: $|u_{r=0}| < \infty$.

На поверхности шара происходит теплообмен по закону Ньютона с окружающей средой, имеющей температуру u_0 , т.е. $-p\frac{\partial u}{\partial r}\Big|_{r=R} = h\big(u\big|_{r=R} - u_0\big)$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_t = a^2 \Delta u + \frac{Q}{c\gamma}, & \Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r}, \\ \left| u_{r=0} \right| < \infty, \\ -p \frac{\partial u}{\partial r} \right|_{r=R} = h \left(u \right|_{r=R} - u_0 \right), \\ u|_{t=0} = 0. \end{cases}$$

Пример 3.4. Записать математическую постановку следующей задачи: растворенное вещество с начальной концентрацией u_0 диффундирует из раствора, заключенного между плоскостями x=0 и x=h в растворитель, ограниченный плоскостями x=h и x=l. Границы x=0 и x=l непроницаемы для вещества.

Уравнение диффузии имеет вид $u_t = a^2 u_{xx}$, где u(x,t) есть концентрация вещества в точке x в момент времени t, $a^2 = \frac{D}{c}$, D – коэффициент диффузии, c – коэффициент пористости.

Границы x=0 и x=l непроницаемы для вещества, т.е. $u_x\big|_{x=0}=0$, $u_x\big|_{x=l}=0$.

Начальная концентрация
$$u(x,0) = \begin{cases} u_0, & 0 < x < h, \\ 0, & h < x < l. \end{cases}$$

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_t = a^2 u_{xx}, \\ u_x \big|_{x=0} = 0, \ u_x \big|_{x=l} = 0, \ u(x,0) = \begin{cases} u_0, \ 0 < x < h, \\ 0, \ h < x < l. \end{cases} \end{cases}$$

3.2. Задача малых колебаний

Малые поперечные колебания струны

Рассмотрим струну, натянутую между двумя точками x = 0, x = l. Если струну вывести из положения равновесия (например, оттянуть ее или ударить по ней), то струна начнет колебаться. Будем предполагать:

- 1) движение точек струны происходит перпендикулярно оси Ox и в одной плоскости (поперечные колебания);
- 2) струна является абсолютно гибкой, т. е. не сопротивляющейся изгибу, при этом сила натяжения направлена по касательной к струне;
 - 3) струна является упругой и подчиняется закону Гука;
- 4) колебания струны малые, т. е. если α есть острый угол между осью Ox и касательной к струне, то величиной α^2 можно пренебречь $(\alpha^2 \approx 0)$.

Обозначим через u(x,t) отклонение точки x струны от положения равновесия в момент времени t. Тогда функция u(x,t) удовлетворяет уравнению

$$\gamma \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2} + f(x, t),$$
(3.12)

где γ – плотность распределения массы; T – величина силы натяжения; f(x,t) – плотность внешних сил. Разделив уравнение на γ и обозначив $\frac{T}{\gamma}$ = a^2 , получим уравнение малых поперечных колебаний струны в виде

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + \frac{f(x,t)}{\gamma}.$$
 (3.13)

Если f(x,t) = 0, то уравнение описывает *свободные колебания* струны без воздействия внешних сил. Если $f(x,t) \neq 0$, то уравнение описывает *вынужден*-*ные колебания* струны под воздействием внешних сил.

Для полного описания реального физического процесса необходимо задать начальные условия и граничные условия.

Начальные условия

Начальные условия описывают в начальный момент времени t=0 начальное положение точек струны и начальную скорость

$$u|_{t=0} = g_1(x), \quad u'_t|_{t=0} = g_2(x).$$

Типы граничных условий

1. Концы струны жестко закреплены:

$$u|_{x=0}=0, u|_{x=l}=0.$$

2. На конец струны x = l или x = 0 действует заданная сила величины f(t):

$$T \frac{\partial u}{\partial x}\Big|_{x=l} = f(t)$$
 или $-T \frac{\partial u}{\partial x}\Big|_{x=0} = f(t)$.

3. Конец x = l свободен (т.е. f(t) = 0):

$$\left| \frac{\partial u}{\partial x} \right|_{x=l} = 0.$$

4. Конец x = l или x = 0 упруго закреплен (p – коэффициент жесткости закрепления):

$$\left| \left(T \frac{\partial u}{\partial x} + p \cdot u \right) \right|_{x = l} = 0 \quad \text{или} \quad \left(-T \frac{\partial u}{\partial x} + p \cdot u \right) \Big|_{x = 0} = 0.$$

Малые поперечные колебания мембраны

Будем рассматривать колебания мембраны, в которых смещение перпендикулярно к плоскости мембраны (поперечные колебания).

Уравнение малых поперечных колебаний мембраны имеет вид

$$\frac{\partial^2 u}{\partial t^2} = a^2 \cdot \Delta u + \frac{f(x, y, t)}{\gamma},$$
(3.14)

где u = u(M,t) есть отклонение точки M мембраны от положения равновесия в момент времени t; $a^2 = \frac{T}{\gamma}$; T – величина силы натяжения; γ – плотность распределения массы; Δ – оператор Лапласа; f(x,y,t) – плотность внешних сил.

Постановка начальных и граничных условий для мембраны аналогична этим же условиям для струны.

К уравнениям вида (3.12), (3.14) приводят также задачи об электромагнитных колебаниях, о колебаниях газа и т.д.

Малые продольные колебания стержня

Рассмотрим упругий стержень, на который действует сила, направленная по оси стержня. Тогда стержень совершает продольные колебания. Пусть x- абсцисса точки упругого стержня в момент времени t=0, $\tilde{x}-$ абсцисса точки стержня в момент времени $t\neq 0$, $\tilde{x}-x=u(x,t)-$ смещение точки x в момент времени t.

Можно показать, что функция u(x,t) удовлетворяет уравнению

$$\gamma S u_{tt} = (E S u_x)_x + f, \qquad (3.15)$$

где S- площадь поперечного сечения стержня; E- модуль Юнга; f- плотность внешних сил.

Если величины E, S, γ – постоянны и $\frac{E}{\gamma}$ = a^2 , то уравнение (3.15) примет вид

$$u_{tt} = a^2 u_{xx} + \frac{f}{\gamma S}.$$
(3.16)

Типы граничных условий

- 1. Конец x = 0 жестко закреплен: $u|_{x=0} = 0$.
- 2. На конец действует продольная сила величины f(t):

$$oxed{ESu_x\Big|_{x=l}} = f(t),$$
 если $x=l$; $oxed{-ESu_x\Big|_{x=0}} = f(t),$ если $x=0$.

- 3. Конец x = l свободен (т.е. f(t) = 0): $u_x \Big|_{x = l} = 0$.
- 4. Конец упруго закреплен (p коэффициент жесткости закрепления):

$$|(ESu_x + pu)|_{x=l} = 0,$$
 если $x = l$; $|(-ESu_x + pu)|_{x=0} = 0,$ если $x = 0$.

Пример 3.5. Записать математическую постановку следующей задачи.

Струна длины l расположена на отрезке [0;l]. В начальный момент струне придана форма кривой $u = \frac{x(l-x)}{8l}$, а затем струна отпущена без начальной скорости. Струна закреплена на левом конце, а правый конец может свободно пере-

сти. Струна закреплена на левом конце, а правый конец может свободно перемещаться так, что касательная на этом конце все время остается горизонтальной. Внешние силы отсутствуют.

Запишем уравнение свободных (внешние силы отсутствуют) малых (начальное отклонение мало) колебаний струны: $u_{tt} = a^2 u_{xx}$, где u(x,t) — отклонение точки x струны от положения равновесия в момент времени t.

Струна закреплена на левом конце, т.е. $u\big|_{x=0}=0$. На правом конце касательная горизонтальна, значит, ее угловой коэффициент равен нулю: $u_x\big|_{x=1}=0$.

В начальный момент струне придана форма кривой u = x(l-x)/8l, начальная скорость равна нулю, т.е. u(x,0) = x(l-x)/8l, $u_t|_{t=0} = 0$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_{tt} = a^2 u_{xx}, \\ u\big|_{x=0} = 0, \ u_x\big|_{x=l} = 0, \\ u(x,0) = x(l-x)/8l, \ u_t\big|_{t=0} = 0. \end{cases}$$

Пример 3.6. Записать математическую постановку следующей задачи.

Круглая однородная мембрана закреплена по контуру и колеблется в среде, сопротивление которой пропорционально первой степени скорости. В момент t=0 к поверхности мембраны приложена внешняя сила плотности $f(\rho,\varphi,t)$, действующая перпендикулярно плоскости невозмущенной мембраны. Начальные отклонения и скорости точек мембраны равны нулю.

Используем уравнение малых поперечных колебаний (3.12). В случае мембраны и с учетом силы сопротивления $f_1 = -\beta u_t$ это уравнение примет вид

$$\gamma u_{tt} = T \cdot \Delta u + f\left(\rho, \varphi, t\right) - \beta u_t \quad \text{или} \quad u_{tt} = a^2 \Delta u + \frac{f\left(\rho, \varphi, t\right)}{\gamma} - \frac{\beta}{\gamma} u_t \,.$$

В этом уравнении $a^2 = \frac{T}{\gamma}$, T – величина силы натяжения, γ – плотность распределения массы, $f(\rho, \varphi, t)$ – плотность внешних сил, β – коэффициент сопротивления сред; Δ – оператор Лапласа, для круглой мембраны его следует записать в полярной системе координат $\Delta u = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2}$.

Мембрана закреплена по контуру, т.е. отклонение $u(\rho, \varphi, t)$ на контуре $\rho = R$ равно нулю. Точка $\rho = 0$ является особой точкой оператора Лапласа, поэтому в этой точке следует потребовать ограниченности функции: $|u_{\rho=0}| < \infty$.

Начальные отклонения и скорости точек мембраны равны нулю, т.е. $u|_{t=0}=0$, $u_t|_{t=0}=0$. Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_{tt} = a^2 \Delta u + \frac{f(\rho, \varphi, t)}{\gamma} - \frac{\beta}{\gamma} u_t, \\ \left| u \right|_{\rho = 0} \right| < \infty, \quad u \right|_{\rho = R} = 0, \\ u \right|_{t=0} = 0, \quad u_t \right|_{t=0} = 0.$$

Пример 3.7. Записать математическую постановку задачи.

Один конец упругого однородного стержня x = 0 закреплен, а на второй конец x = l действует сила величины Q, направленная вдоль оси стержня. В начальный момент сила перестает действовать.

Поскольку сила действует вдоль оси стержня, то стержень совершает продольные колебания, описываемые уравнением (3.16): $u_{tt} = a^2 u_{xx}$.

В начальный момент смещение u(x,t) точки x вызвано силой Q и по закону Гука $ESu_x\Big|_{t=0}=Q$ или $u\Big|_{t=0}=\frac{Qx}{ES}$. Начальные скорости отсутствуют, поэтому $u_t\Big|_{t=0}=0$.

Конец x=0 закреплен, поэтому $u\big|_{x=0}=0$; с момента t=0 сила перестает действовать и второй конец становится свободным, поэтому $u_x\big|_{x=l}=0$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_{tt} = a^2 u_{xx}, \\ u|_{x=0} = 0, \ u_x|_{x=l} = 0, \\ u|_{t=0} = \frac{Qx}{Es}, \ u_t|_{t=0} = 0. \end{cases}$$

3.3. Задачи, приводящиеся к уравнению Лапласа

Рассмотрим стационарное (не зависящее от времени) распределение температуры в теле. Так как температура u не зависит от времени, то $\frac{\partial u}{\partial t} = 0$ и уравнение теплопроводности (6.3) примет вид $a^2 \Delta u + f = 0$ или после деления на a^2

$$\Delta u(M) = g(M)$$
 (3.17)

При $g(M) \neq 0$ уравнение (3.17) называют уравнением Пуассона.

При g(M) = 0 уравнение (3.17) называют уравнением Лапласа.

К таким уравнениям приводит изучение стационарных процессов различной физической природы. Уравнению Лапласа удовлетворяют гравитационный и электростатический потенциалы, потенциал скорости безвихревого потока несжимаемой жидкости.

В конкретных физических задачах обычно требуется найти в области (D) решение уравнения (3.17), удовлетворяющее на границе области σ граничному условию одного из следующих видов:

- 1) $u|_{\sigma} = g_1(M) -$ для первой краевой задачи;
- 2) $\frac{\partial u}{\partial n}\Big|_{\sigma} = g_2(M) для второй краевой задачи;$
- 3) $\left(\frac{\partial u}{\partial n} + h u\right)\Big|_{\sigma} = g_3(M)$ для третьей краевой задачи.

Пример 3.8. Записать математическую постановку задачи.

Найти стационарное распределение температуры внутри однородного цилиндра радиусом R и высотой H, если к верхнему основанию подводится тепловой поток плотности $f(\rho)$, нижнее основание цилиндра поддерживается при нулевой температуре, боковая поверхность — теплоизолирована.

Стационарное распределение температуры u(M) описывается уравнением: $\Delta u(M) = g(M)$. В нашем случае плотность тепловых источников g(M) = 0 и уравнение примет вид $\Delta u = 0$.

Задачу, естественно, решать в цилиндрической системе координат ρ , φ , z. Условия задачи не зависят от φ , поэтому функция u является функцией только переменных ρ , z. Оператор Лапласа следует взять в цилиндрической системе

координат и учесть, что u не зависит от φ , т. е. $\frac{\partial^2 u}{\partial \varphi^2} = 0$, поэтому

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{\partial^2 u}{\partial z^2}.$$

Слагаемые $\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho}$ назовем радиальной частью оператора Лапласа и обозначим $\Delta_{\rho} u$. Тогда $\Delta u = \Delta_{\rho} u + u_{zz}$.

Точка $\rho=0$ является особой точкой оператора Лапласа, поэтому в этой точке ставится граничное условие: $\left|u\right|_{\rho=0}\left|<\infty\right.$

К верхнему основанию подводится тепловой поток плотности $f(\rho)$, т.е. по условию (3.9) имеем $-p\frac{\partial u}{\partial n}\Big|_{z=H}=f(\rho)$. Нормаль к верхнему основанию направлена по оси Oz, поэтому $\frac{\partial u}{\partial n}=\frac{\partial u}{\partial z}$ и условие (3.9) примет вид $-p\frac{\partial u}{\partial z}\Big|_{z=H}=f(\rho)$.

Нижнее основание цилиндра поддерживается при нулевой температуре, т.е. $u|_{z=0}=0$. Боковая поверхность цилиндра — теплоизолирована, т.е. по условию (3.10) имеем $\left.\frac{\partial u}{\partial n}\right|_{\rho=R}=0$, а с учетом того, что нормаль к боковой поверхности направлена по радиусу, это условие примет вид $\left.\frac{\partial u}{\partial \rho}\right|_{\rho=R}=0$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} \Delta_{\rho} u + u_{zz} = 0 & \left(\Delta_{\rho} u = u_{\rho\rho} + \frac{1}{\rho} u_{\rho} \right), \\ -p \cdot u_{z} \Big|_{z=H} = f(\rho), & u \Big|_{z=0} = 0, \\ \left| u \Big|_{\rho=0} \right| < \infty, & u_{\rho} \Big|_{\rho=R} = 0. \end{cases}$$

Пример 3.9. Найти потенциал электростатического поля u(x,y) внутри прямоугольника 0 < x < a, 0 < y < b, если потенциал вдоль стороны x = 0 равен u_0 , а три другие стороны прямоугольника заземлены. Внутри прямоугольника электрических зарядов нет.

Потенциал электростатического поля u(x,y) удовлетворяет уравнению Лапласа $\Delta u = u_{xx} + u_{yy} = 0$, поэтому задача примет вид

$$\begin{cases} u_{xx} + u_{yy} = 0, & 0 < x < a, \ 0 < y < b, \\ u\big|_{x=0} = u_0, \ u\big|_{x=a} = 0, \\ u\big|_{y=0} = 0, \ u\big|_{y=b} = 0. \end{cases}$$

3.4. Приведение уравнений к каноническому виду

При выводе основных уравнений математической физики обычно рассматриваются простейшие математические модели. При значительных допущениях и ограничениях получают, например, простейшее уравнение колебаний струны

 $u_{tt} = a^2 u_{xx}$ или простейшее уравнение теплопроводности $u_t = a^2 u_{xx}$. В математических моделях, более приближенных к реальным процессам, получаются более сложные уравнения. Но иногда их можно привести к более простым уравнениям с помощью некоторой замены переменных.

Дифференциальные уравнения математической физики, которые мы будем изучать, имеют ряд общих черт — все они — второго порядка и линейны относительно старших производных. Мы ограничимся случаем, когда неизвестная функция зависит от двух переменных x, y. Общий вид таких уравнений

$$au_{xx} + 2bu_{xy} + cu_{yy} = f(x, y, u, u_x, u_y);$$
(3.18)

a, b, c являются функциями от x, y, определенными в некоторой области D.

Алгоримм приведения уравнения $au_{xx} + 2bu_{xy} + cu_{yy} = f(x, y, u, u_x, u_y)$ к каноническому виду следующий.

- 1. Определить *тип уравнения* по знаку величины $\Delta = \begin{vmatrix} a & b \\ b & c \end{vmatrix}$.
- 2. Составить *уравнение характеристик* $a\left(\frac{dy}{dx}\right)^2 2b\left(\frac{dy}{dx}\right) + c = 0$ и найти его общие интегралы.
- 3. Выбрать замену в зависимости от знака Δ

Знак Δ	Общие интегралы уравнения характеристик	Замена	Канонический вид
Δ<0	$\varphi(x,y) = c_1, \ \psi(x,y) = c_2$	$p = \varphi(x, y), \ q = \psi(x, y)$ $p = \frac{\varphi + \psi}{2}, q = \frac{\varphi - \psi}{2}$	$u_{pq} = g(p,q,u,u_p,u_q)$ $u_{pp} - u_{qq} = g(p,q,u,u_p,u_q)$
$\Delta > 0$	$\varphi(x,y) \pm i\psi(x,y) = c$	$p = \varphi(x, y), \ q = \psi(x, y)$	$u_{pp} + u_{qq} = g(p,q,u,u_p,u_q)$
$\Delta = 0$	$\varphi(x,y)=c$	$p = \varphi(x, y), q$ — произв.	$u_{qq} = g(p,q,u,u_p,u_q)$

Замечание

Если получившееся каноническое уравнение есть линейное (относительно функций u,u_p,u_q) уравнение с постоянными коэффициентами, то возможно дальнейшее упрощение уравнения с помощью замены $u=v\cdot e^{\lambda p+\mu\,q}$.

Пример 3.10. Уравнение $y \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$ (y < 0) привести к каноническому виду.

Решение. Это уравнение называется уравнением Трикоми и представляет интерес в газовой динамике, причём в области y < 0 оно соответствует сверхзвуковому движению, в области y > 0 — дозвуковому движению.

1. Определим тип уравнения. Для этого вычислим определитель

$$\Delta = \begin{vmatrix} a & b \\ b & c \end{vmatrix} = \begin{vmatrix} y & 0 \\ 0 & 1 \end{vmatrix} = y.$$

В области y < 0 исходное уравнение является уравнением гиперболического типа, так как $\Delta < 0$.

2. Составим уравнение характеристик $y \left(\frac{dy}{dx}\right)^2 + 1 = 0$.

Из этого уравнения при y < 0 имеем:

$$\left(\frac{dy}{dx}\right)^2 = -\frac{1}{y}$$
 или $\frac{dy}{dx} = \pm \frac{1}{\sqrt{-y}}$.

Разделим переменные:

$$\sqrt{-y} \cdot dy = \pm dx .$$

Интегрируя последнее равенство, получим два общих интеграла дифференциального уравнения характеристик:

$$\frac{2}{3}(-y)^{3/2} + x = c_1, \qquad \frac{2}{3}(-y)^{3/2} - x = c_2.$$

3. Введем новые переменные

$$p = \frac{2}{3}(-y)^{3/2} + x$$
, $q = \frac{2}{3}(-y)^{3/2} - x$.

Сделаем замену переменных:

$$\begin{split} \frac{\partial u}{\partial x} &= \left(\frac{\partial}{\partial p} \cdot p_x + \frac{\partial}{\partial q} \cdot q_x\right) u = \left(\frac{\partial}{\partial p} - \frac{\partial}{\partial q}\right) u \;, \\ \frac{\partial u}{\partial y} &= \left(\frac{\partial}{\partial p} \cdot p_y + \frac{\partial}{\partial q} \cdot q_y\right) u = \left(-\frac{\partial}{\partial p} (-y)^{1/2} - \frac{\partial}{\partial q} (-y)^{1/2}\right) u \;, \\ \frac{\partial^2 u}{\partial x^2} &= \left(\frac{\partial}{\partial p} - \frac{\partial}{\partial q}\right)^2 u = \frac{\partial^2 u}{\partial p^2} - 2\frac{\partial^2 u}{\partial p \partial q} + \frac{\partial^2 u}{\partial q^2}, \\ \frac{\partial^2 u}{\partial y^2} &= \left(-\frac{\partial}{\partial p} \sqrt{-y} - \frac{\partial}{\partial q} \sqrt{-y}\right)^2 u + u_p \left(-\sqrt{-y}\right)'_y + u_q \left(-\sqrt{-y}\right)'_y = \\ &= -y \left(\frac{\partial^2 u}{\partial p^2} + 2\frac{\partial^2 u}{\partial p \partial q} + \frac{\partial^2 u}{\partial q^2}\right) + \frac{1}{2\sqrt{-y}} \left(u_p + u_q\right). \end{split}$$

Тогда исходное уравнение примет вид

$$y\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} = y\left(\frac{\partial^{2}u}{\partial p^{2}} - 2\frac{\partial^{2}u}{\partial p\partial q} + \frac{\partial^{2}u}{\partial q^{2}}\right) - y\left(\frac{\partial^{2}u}{\partial p^{2}} + 2\frac{\partial^{2}u}{\partial p\partial q} + \frac{\partial^{2}u}{\partial q^{2}}\right) +$$

$$+ \frac{1}{2\sqrt{-y}}\left(u_{p} + u_{q}\right) = -4y\frac{\partial^{2}u}{\partial p\partial q} + \frac{1}{2\sqrt{-y}}\left(u_{p} + u_{q}\right) = 0 \qquad \Rightarrow$$

$$\Rightarrow \qquad \frac{\partial^{2}u}{\partial p\partial q} = \frac{1}{8(-y)^{3/2}}\left(u_{p} + u_{q}\right).$$

Учитывая, что $p+q=\frac{4}{3}(-y)^{3/2}$ или $(-y)^{3/2}=\frac{3}{4}(p+q)$, придем к каноническому уравнению: $u_{pq}=-\frac{1}{6(p+q)}\left(u_p+u_q\right)$.

Пример 3.11. Привести к каноническому виду уравнение

$$u_{xx} + 4u_{xy} + 5u_{yy} + u_x + 2u_y = 0.$$

Решение. 1. Определим тип уравнения. Для этого вычислим определитель:

$$\Delta = \begin{vmatrix} a & b \\ b & c \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 1.$$

Так как $\Delta > 0$, то исходное уравнение является уравнением эллиптического типа.

2. Для приведения уравнения к каноническому виду составим уравнение характеристик:

$$\left(\frac{dy}{dx}\right)^2 - 4 \cdot \left(\frac{dy}{dx}\right) + 5 = 0.$$

Решая это уравнение, получим

$$\frac{dy}{dx} = 2 \pm \sqrt{4 - 5} = 2 \pm i \quad \Rightarrow \quad dy = (2 \pm i)dx \quad \Rightarrow \quad y = (2 \pm i)x + c \quad \Rightarrow \quad (y - 2x) \pm ix = c.$$

3. Введем новые переменные p = (y-2x), q = x.

Сделаем замену переменных:

$$\begin{split} \frac{\partial u}{\partial x} &= \left(\frac{\partial}{\partial p} \cdot p_x + \frac{\partial}{\partial q} \cdot q_x\right) u = \left(-2\frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right) u, \\ \frac{\partial u}{\partial y} &= \left(\frac{\partial}{\partial p} \cdot p_y + \frac{\partial}{\partial q} \cdot q_y\right) u = \left(\frac{\partial}{\partial p}\right) u, \\ \frac{\partial^2 u}{\partial x^2} &= \left(-2\frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right)^2 u = 4\frac{\partial^2 u}{\partial p^2} - 4\frac{\partial^2 u}{\partial p \partial q} + \frac{\partial^2 u}{\partial q^2}, \\ \frac{\partial^2 u}{\partial x \partial y} &= \left(-2\frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right) \cdot \left(\frac{\partial}{\partial p}\right) u = -2\frac{\partial^2 u}{\partial p^2} + \frac{\partial^2 u}{\partial p \partial q}, \\ \frac{\partial^2 u}{\partial y^2} &= \left(\frac{\partial}{\partial p}\right)^2 u = \frac{\partial^2 u}{\partial p^2}. \end{split}$$

Подставляя эти выражения в исходное уравнение, получим

$$\frac{\partial^2 u}{\partial p^2} (4 - 8 + 5) + \frac{\partial^2 u}{\partial p \, \partial q} (-4 + 4) + \frac{\partial^2 u}{\partial q^2} + \frac{\partial u}{\partial p} (-2 + 2) + \frac{\partial u}{\partial q} = 0 \quad \text{или} \quad \frac{\partial^2 u}{\partial p^2} + \frac{\partial^2 u}{\partial q^2} + \frac{\partial u}{\partial q} = 0.$$

Это есть канонический вид эллиптического уравнения

Пример 3.12. Привести уравнение
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$
 к

каноническому виду и найти его общее решение.

Решение. 1. Определим тип уравнения. Для этого вычислим определитель

$$\Delta = \begin{vmatrix} a & b \\ b & c \end{vmatrix} = \begin{vmatrix} x^2 & xy \\ xy & y^2 \end{vmatrix} = x^2y^2 - x^2y^2 = 0.$$

Так как $\Delta = 0$, то исходное уравнение является уравнением параболического типа.

2. Составим уравнение характеристик $x^2 \left(\frac{dy}{dx}\right)^2 + 2xy \cdot \left(\frac{dy}{dx}\right) + y^2 = 0$.

Решим это уравнение:

$$\left(x \cdot \frac{dy}{dx} + y\right)^2 = 0 \implies x \cdot \frac{dy}{dx} = -y \implies \frac{dy}{y} = -\frac{dx}{x}.$$

Интегрируя, получим общий интеграл уравнения характеристик $\ln y = -\ln x + \ln c$ или x y = c.

3. Введем новую переменную p = x y; вторую переменную q можно выбрать произвольно, например, положим q = x.

Сделаем замену переменных в производных $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial y^2}$; затем каждую из них умножим на коэффициет, с которым она входит в исходное уравнение и сложим:

$$x \qquad \frac{\partial u}{\partial x} = \left(\frac{\partial}{\partial p} \cdot p_x + \frac{\partial}{\partial q} \cdot q_x\right) u = \left(y \frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right) u,$$

$$y \qquad \frac{\partial u}{\partial y} = \left(\frac{\partial}{\partial p} \cdot p_y + \frac{\partial}{\partial q} \cdot q_y\right) u = \left(x \frac{\partial}{\partial p}\right) u,$$

$$x^2 \qquad \left\{\frac{\partial^2 u}{\partial x^2} = \left(y \frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right)^2 u = y^2 \frac{\partial^2 u}{\partial p^2} + 2y \frac{\partial^2 u}{\partial p \partial q} + \frac{\partial^2 u}{\partial q^2},\right\}$$

$$-2xy \qquad \frac{\partial^2 u}{\partial x \partial y} = \left(y \frac{\partial}{\partial p} + \frac{\partial}{\partial q}\right) \cdot \left(x \frac{\partial}{\partial p}\right) u + 1 \cdot \frac{\partial u}{\partial p} = xy \frac{\partial^2 u}{\partial p^2} + x \frac{\partial^2 u}{\partial p \partial q} + \frac{\partial u}{\partial p},$$

$$y^2 \qquad \frac{\partial^2 u}{\partial y^2} = \left(x \frac{\partial}{\partial p}\right)^2 u = x^2 \frac{\partial^2 u}{\partial p^2}.$$

$$\Rightarrow \frac{\partial^2 u}{\partial p^2} \underbrace{\left(x^2 y^2 - 2x^2 y^2 + x^2 y^2\right)}_{=0} + \frac{\partial^2 u}{\partial p \partial q} \underbrace{\left(2x^2 y - 2x^2 y\right)}_{=0} + \frac{\partial^2 u}{\partial q^2} x^2 + \frac{\partial u}{\partial p} \underbrace{\left(xy + xy - 2xy\right)}_{=0} + x \frac{\partial u}{\partial q} = 0.$$

Учитывая, что x = q, и сократив на q, получим канонический вид уравнения:

$$q\,u_{qq}+u_q=0\;.$$

4. Для решения этого уравнения сделаем замену $u_q=z$. Тогда уравнение $q\,u_{qq}+u_q=0$ примет вид $q\,u_z+z=0$ или $q\,\frac{dz}{dq}=-z$ или $\frac{dz}{z}=-\frac{dq}{q}$.

Проинтегрируем последнее равенство по q:

$$\ln z = -\ln q + \ln f_1(p) \implies z = \frac{1}{q} f_1(p) \implies u_q = \frac{1}{q} f_1(p);$$

здесь $f_1(p)$ — произвольная функция, зависящая только от p и не зависящая от переменной интегрирования q.

Ещё раз интегрируя по q, получим: $u = \int \frac{1}{q} f_1(p) dq = f_1(p) \ln q + f_2(p)$.

Вернемся к первоначальным переменным, учитывая, что p = x y, q = x. Тогда

$$u = f_1(x y) \ln x + f_2(x y).$$

Получили общее решение уравнения. В отличие от обыкновенных дифференциальных уравнений общее решение уравнения в частных производных содержит не две произвольные константы, а две произвольные функции $f_1(xy)$ и $f_2(xy)$.

Пример 3.13. Найти общее решение уравнения
$$u_{xy} + 3u_x - 5u_y - 15u = 0$$
.

Решение. Это уравнение уже является каноническим видом гиперболического уравнения. Так как уравнение является линейным относительно u, u_x, u_y с постоянными коэффициентами, то его можно упростить с помощью замены $u = v \cdot e^{\lambda x + \mu y}$.

Вычислим производные функции и

$$u_x = e^{\lambda x + \mu y} (v_x + \lambda v),$$

$$u_y = e^{\lambda x + \mu y} (v_y + \mu v),$$

$$u_{xy} = e^{\lambda x + \mu y} (v_{xy} + \lambda v_y + \mu v_x + \lambda \mu v)$$

и подставим их в исходное уравнение:

$$e^{\lambda x + \mu y} \left[v_{xy} + v_x (3 + \mu) + v_y (\lambda - 5) + v (-15 + 3\lambda - 5\mu + \lambda \mu) \right] = 0.$$

Положим $\lambda=5,\ \mu=-3$, сократим уравнение на $e^{\lambda\,x+\mu\,y}$. Тогда уравнение примет вид $v_{xy}=0$.

Интегрируя это уравнение по y, получим $v_x = f(x)$, где f(x) — произвольная функция, не зависящая от переменной интегрирования y. Теперь проинтегрируем получившееся уравнение $v_x = f(x)$ по x:

$$v = \int f(x) dx = f_1(x) + f_2(y)$$
.

Здесь $f_2(y)$ — произвольная функция, не зависящая от переменной интегрирования x, а $f_1(x) = \int f(x) dx$. Возвращаясь к исходной функции, получим:

$$u(x,y) = v(x,y) \cdot e^{\lambda x + \mu y} = (f_1(x) + f_2(y))e^{5x-3y}.$$

Это есть общее решение уравнения в частных производных второго порядка, оно зависит от двух произвольных функций.

4. Метод Фурье разделения переменных

Метод Фурье разделения переменных применяется для решения в ограниченной области (D) с границей (σ) задачи теплопроводности, или задачи колебаний, или стационарных задач. Сначала рассмотрим случай однородного уравнения и однородных граничных условий.

4.1. Метод Фурье для однородного уравнения и однородных граничных условий

Дифференциальное уравнение и граничные условия называют *однородны-* mu, если им удовлетворяет функция $u \equiv 0$.

Сначала рассмотрим задачи теплопроводности и задачи колебаний, позже стационарные задачи.

Метод Фурье решения задачи состоит из нескольких этапов.

- 1. Отыскание решения в виде $u(M,t) = X(M) \cdot T(t)$, подстановка в уравнение и разделение переменных.
- 2. Перенос однородных граничных условий на функцию X(M).
- 3. Решение задачи Штурма-Лиувилля для функции X(M)

(т.е. отыскание собственных функций $X_k(M)$ и собственных значений λ_k).

- 4. Отыскание функций $T_k(t)$.
- 5. Отыскание искомого решения в виде ряда $u(M,t) = \sum_{k=1}^{\infty} X_k(M) \cdot T_k(t)$.

Пример 4.1. Предполагая, что стенки однородного стержня теплоизолированы, найти закон распределения температуры u(x,t), если на концах стержня поддерживается нулевая температура и в начальный момент температура была $g(x) = 7 \sin \frac{4\pi x}{I}$.

Решение. Уравнение теплопроводности для однородного стержня имеет вид $u_{tt} = a^2 u_{xx}$. На концах стержня поддерживается нулевая температура, т.е. $u\big|_{x=0} = 0$, $u\big|_{x=l} = 0$. Известна начальная температура $u\big|_{t=0} = 7\sin\left(4\pi x/l\right)$.

Итак, математическая постановка задачи имеет вид

$$\begin{cases} u_{t} = a^{2}u_{xx}, \\ u|_{x=0} = 0, \quad u|_{x=l} = 0, \\ u|_{t=0} = 7\sin(4\pi x/l). \end{cases}$$
(4.1)

Функция u = 0 удовлетворяет граничным условиям и дифференциальному уравнению, т.е. граничные условия и уравнение являются однородными. Поэтому применим метод Фурье. Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде $u(x,t) = X(x) \cdot T(t)$

Подставим $u(x,t) = X(x) \cdot T(t)$ в дифференциальное уравнение задачи (4.1):

$$X(x) \cdot T'(t) = a^2 T(t) \cdot X''(x).$$

Разделим переменные

$$\frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)}.$$

Дробь в левой части этого равенства зависит только от t, в правой части — только от x; поэтому равенство возможно лишь тогда, когда эти дроби равны постоянной, обозначим ее λ . Тогда из равенства

$$\frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

получим два уравнения

$$T'(t) = \lambda a^2 T(t), \qquad X''(x) = \lambda X(x).$$

2. Перенос однородных граничных условий на функцию X(x)

Подставим $u(x,t) = X(x) \cdot T(t)$ в граничные условия задачи (4.1):

$$u|_{x=0} = X(0) \cdot T(t) = 0; \quad u|_{x=l} = X(l) \cdot T(t) = 0.$$

Так как $T(t) \neq 0$, то получим X(0) = 0; X(l) = 0.

3. Решение задачи для функции X(x): $\begin{cases} X''(x) = \lambda X(x), \\ X(0) = 0, \quad X(l) = 0 \end{cases}$

а. Дифференциальный оператор имеет вид LX = AX'' + BX' + CX, где A = 1, B = 0, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $X''(x) = \lambda X(x)$ примет вид:

$$X''(x) = -\mu^2 X(x).$$

- б. Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение $s^2 = -\mu^2$. Его решения $s = \pm \mu i$, а общее решение дифференциального уравнения $X(x) = c_1 \cos \mu x + c_2 \sin \mu x$.
- в. Воспользуемся граничными условиями X(0) = 0, X(l) = 0. Из граничного условия X(0) = 0 имеем $c_1 = 0$ и $X(x) = c_2 \sin \mu x$. Так как собственные функции есть ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_2 = 1$. Из условия X(l) = 0 получим

$$\sin \mu l = 0$$
, $\mu l = \pi k$, $\mu_k = \frac{\pi k}{l}$ $(k = 1, 2, ...)$.

Итак, собственные функции

$$X_k = \sin \mu_k x$$
, где $\mu_k = \frac{\pi k}{l}$ $(k = 1, 2, ...)$.

г. Найдем вес ортогональности собственных функций оператора LX = AX'' + BX' + CX, где A = 1, B = 0, C = 0:

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dx\right) = \exp\left(\int 0 dx\right) = e^0 = 1.$$

4. Отыскание функций $T_k(t)$ из уравнения $T_k'(t) = -a^2 \mu_k^2 T_k(t)$

Запишем уравнение в виде $\frac{dT_{k}\left(t\right)}{dt}$ = $-a^{2}\mu_{k}^{2}T_{k}\left(t\right)$. Разделим переменные

$$\frac{d T_k(t)}{T_k(t)} = -a^2 \mu_k^2 dt$$

и проинтегрируем это равенство. Получим $\ln T_k(t) = -a^2 \mu_k^2 t + \ln c_k$ или

$$T_k(t) = c_k e^{-a^2 \mu_k^2 t}.$$

5. Отыскание искомого решения в виде $u(x,t) = \sum_{k=1}^{\infty} u_k(x,t) = \sum_{k=1}^{\infty} T_k(t) \cdot X_k(x)$

Подставим функцию

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) \cdot X_k(x) = \sum_{k=1}^{\infty} c_k e^{-a^2 \mu_k^2 t} \cdot X_k(x)$$
 (4.2)

в начальные условия задачи (4.1) и учтем, что $\sin \frac{4\pi x}{t} = X_4(x)$:

$$u\Big|_{t=0} = \sum_{k=0}^{\infty} c_k X_k(x) = 7X_4(x). \tag{4.3}$$

Сравнивая в равенстве (4.3) коэффициенты при $X_4(x)$ и при $X_k(x)$ ($k \neq 4$), получим $c_4 = 7$, $c_k = 0$ ($k \neq 4$).

Подставим эти коэффициенты в решение (4.2)

$$u(x,t) = \sum_{k=0}^{\infty} c_k e^{-a^2 \mu_k^2 t} \cdot X_k(x) = c_4 e^{-a^2 \mu_4^2 t} \cdot X_4(x) = 7e^{-(4\pi a/l)^2 t} \cdot \sin \frac{4\pi x}{l}.$$

Итак, $u(x,t) = 7e^{-(4\pi a/l)^2 t} \cdot \sin \frac{4\pi x}{l}$.

Пример 4.2. Один конец упругого однородного стержня x = 0 закреплен, а на второй конец x = l действует сила величиной Q, направленная вдоль оси стержня. Найти продольные колебания стержня, если в начальный момент сила перестает действовать.

Математическая постановка задачи приведена в примере 3.7:

$$\begin{cases} u_{tt} = a^{2}u_{xx}, \\ u|_{x=0} = 0, \ u_{x}|_{x=l} = 0, \quad q = \frac{Qx}{Es}. \\ u|_{t=0} = qx, \ u_{t}|_{t=0} = 0, \end{cases}$$
(4.4)

Функция u = 0 удовлетворяет граничным условиям и дифференциальному уравнению, т.е. граничные условия и уравнение являются однородными. Поэтому применим метод Фурье. Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде $u(x,t) = X(x) \cdot T(t)$

Подставим $u(x,t) = X(x) \cdot T(t)$ в дифференциальное уравнение задачи (4.4):

$$X(x) \cdot T''(t) = a^2 T(t) \cdot X''(x).$$

Разделим переменные: $\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)}$.

Дробь в левой части этого равенства зависит только от t, в правой части — только от x; поэтому равенство возможно лишь тогда, когда эти дроби равны постоянной, обозначим ее λ . Тогда из равенства

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

получим два уравнения

$$T''(t) = \lambda a^2 T(t), \qquad X''(x) = \lambda X(x).$$

2. Перенос однородных граничных условий на функцию X(x)

Подставим $u(x,t) = X(x) \cdot T(t)$ в граничные условия задачи (4.4):

$$X(0) \cdot T(t) = 0;$$
 $X'(l) \cdot T(t) = 0.$

Так как $T(t) \neq 0$, то получим X(0) = 0; X'(l) = 0.

3. Решение задачи для функции X(x): $\begin{cases} X''(x) = \lambda X(x), \\ X(0) = 0, \ X'(l) = 0 \end{cases}$

а. Дифференциальный оператор имеет вид: LX = AX'' + BX' + CX, где A = 1, B = 0, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$, т.е. $\lambda = -\mu^2$. Тогда уравнение $X''(x) = \lambda X(x)$ примет вид:

$$X''(x) = -\mu^2 X(x).$$

- б. Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение: $s^2 = -\mu^2$. Его решения $s = \pm \mu i$, а общее решение дифференциального уравнения $X(x) = c_1 \cos \mu x + c_2 \sin \mu x$.
- в. Воспользуемся граничными условиями X(0)=0, X'(l)=0. Из граничного условия X(0)=0 имеем $c_1=0$ и $X(x)=c_2\sin\mu x$. Так как собственные функции есть ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_2=1$. Из условия X'(l)=0 получим

$$X'\big(l\big) = \mu \, \cos \mu \, l = 0 \quad \Rightarrow \quad \mu = 0 \quad \text{или} \quad \mu \, l = \frac{\pi}{2} \big(2k+1\big), \quad \mu_k = \frac{\pi}{2\,l} \big(2k+1\big) \quad (k=0,1,2,\ldots) \; .$$

Заметим, что $\mu = 0$ нам не подходит, так как тогда $X(x) = \sin \mu x = 0 \Rightarrow u(x,t) = X(x) \cdot T(t) = 0$ не удовлетворяет начальному условию задачи. Итак, собственные функции

$$X_k(x) = \sin \mu_k x$$
, где $\mu_k = \frac{\pi}{2l}(2k+1)$ $(k = 0,1,2,...)$.

Вес ортогональности этих функций $\rho = 1$ находится, как в предыдущем примере.

4. Отыскание функций $T_k(t)$ из уравнения $T_k''(t) = -a^2 \mu_k^2 T_k(t)$

Составим характеристическое уравнение: $s^2 = -a^2 \mu_k^2$. Его решения $s = \pm a \mu_k i$, а общее решение дифференциального уравнения

$$T_k(t) = c_k \cdot \cos(\mu_k a t) + d_k \cdot \sin(\mu_k a t).$$

5. Отыскание искомого решения в виде
$$u(x,t) = \sum_{k=0}^{\infty} u_k(x,t) = \sum_{k=0}^{\infty} T_k(t) \cdot X_k(x)$$

Подставим функцию

$$u(x,t) = \sum_{k=0}^{\infty} T_k(t) \cdot X_k(x) = \sum_{k=0}^{\infty} (c_k \cos \mu_k a t + d_k \sin \mu_k a t) X_k(x)$$
 (4.5)

в начальные условия задачи (4.4):

$$u\Big|_{t=0} = q x = \sum_{k=0}^{\infty} c_k X_k(x) \quad \Rightarrow \quad c_k = \frac{(q x, X_k)}{(X_k, X_k)},$$

$$u_t\Big|_{t=0} = 0 = \sum_{k=0}^{\infty} d_k \mu_k X_k(x) \quad \Rightarrow \quad d_k \mu_k = 0 \quad \Rightarrow \quad d_k = 0.$$

$$(4.6)$$

Вычислим коэффициент $c_k = \frac{(q x, X_k)}{(X_k, X_k)}$:

$$(qx, X_k) = \int_0^l q \, x \cdot X_k(x) \, dx = q \int_0^l \underbrace{x}_{=u} \cdot \underbrace{\sin \mu_k x \, dx}_{=dv} = q \left(x \cdot \frac{-\cos \mu_k x}{\mu_k} \Big|_0^l + \int_0^l \frac{\cos \mu_k x}{\mu_k} \, dx \right) =$$

$$= q \left(l \cdot \frac{-\cos \mu_k l}{\mu_k} + \frac{\sin \mu_k x}{\mu_k^2} \Big|_0^l \right) = q \frac{(-1)^k}{\mu_k^2},$$

$$(X_k, X_k) = \int_0^l X_k^2(x) dx = \int_0^l \cos^2(\mu_k x) dx = \int_0^l \frac{1 + \cos(2\mu_k x)}{2} dx = \frac{1}{2} \left(x - \frac{\sin(2\mu_k x)}{2\mu_k} \Big|_0^l \right) = \frac{l}{2}.$$

Тогда $c_k = \frac{(q \, x, X_k)}{(X_k, X_k)} = \frac{2 \, q}{l} \cdot \frac{(-1)^k}{\mu_k^2}$. Подставим эти коэффициенты в решение (4.5):

$$u(x,t) = \sum_{k=0}^{\infty} \left(c_k \cos \mu_k a t + \underbrace{d_k \sin \mu_k a t}_{=0} \right) X_k(x) = \frac{2q}{l} \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\mu_k^2} \cos \mu_k a t \cdot \sin \mu_k x.$$

Пример 4.3. Решить задачу о свободных колебаниях квадратной мембраны со стороной l=1, закрепленной по контуру, если в начальный момент скорость равнялась нулю, а отклонение равнялось $7\sin 3\pi x \sin 4\pi y$.

Математическая постановка задачи:

$$\begin{cases} u_{tt} = a^{2} \Delta u, & \Delta u = u_{xx} + u_{yy}, \\ u|_{x=0} = 0, & u|_{x=1} = 0, & u|_{y=0} = 0, & u|_{y=1} = 0, \\ u|_{t=0} = 7\sin 3\pi x \sin 4\pi y, & u_{t}|_{t=0} = 0. \end{cases}$$

$$(4.7)$$

Функция u = 0 удовлетворяет граничным условиям и дифференциальному уравнению, т.е. граничные условия и уравнение являются однородными. Поэтому применим метод Фурье. Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде $u(x, y, t) = X(x) \cdot Y(y) \cdot T(t)$

Подставим $u(x, y, t) = X(x) \cdot Y(y) \cdot T(t)$ в дифференциальное уравнение задачи (4.7):

$$X(x) \cdot Y(y) \cdot T''(t) = a^2 T(t) \cdot \left[X''(x) \cdot Y(y) + X(x) \cdot Y''(y) \right].$$

Разделим это равенство на $a^2X(x)\cdot Y(y)\cdot T(t)$:

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} + \frac{Y''(x)}{Y(x)}.$$

Первая дробь зависит только от t, вторая дробь зависит только от x, третья дробь — только от y; поэтому равенство возможно лишь тогда, когда эти дроби равны постоянным:

$$\frac{T''(t)}{a^2T(t)} = \lambda$$
, $\frac{X''(x)}{X(x)} = \mu$, $\frac{Y''(x)}{Y(x)} = \gamma$, причем $\lambda = \mu + \gamma$.

Отсюда получим три уравнения

$$T''(t) = \lambda a^2 T(t), \ X''(x) = \mu X(x), \ Y''(x) = \gamma Y(y).$$

2. Перенос однородных граничных условий

Подставим $u(x, y, t) = X(x) \cdot Y(y) \cdot T(t)$ в граничные условия задачи (4.7):

$$\begin{aligned} u \big|_{x=0} &= 0 = X(0) \cdot Y(y) \cdot T(t), & \Rightarrow X(0) = 0, \\ u \big|_{x=1} &= 0 = X(1) \cdot Y(y) \cdot T(t), & \Rightarrow X(1) = 0, \\ u \big|_{y=0} &= 0 = X(x) \cdot Y(0) \cdot T(t), & \Rightarrow Y(0) = 0, \\ u \big|_{y=1} &= 0 = X(x) \cdot Y(1) \cdot T(t), & \Rightarrow Y(1) = 0. \end{aligned}$$

Здесь мы воспользовались тем, что $T(t) \neq 0$, $X(x) \neq 0$, $Y(y) \neq 0$, иначе бы $u(x,y,t) = X(x) \cdot Y(y) \cdot T(t) = 0$ и не удовлетворяло ненулевому начальному условию.

3. Решение задач для функций X(x), Y(y)

$$\begin{cases} X''(x) = \mu X(x), & \{Y''(y) = \gamma Y(y), \\ X(0) = 0, & X(1) = 0, \end{cases} Y(0) = 0, Y(1) = 0.$$

а. Так же как в предыдущих задачах, имеем $\mu \le 0$, $\gamma \le 0$, т.е. $\mu = -\tilde{\mu}^2$, $\gamma = -\tilde{\gamma}^2$. Тогда уравнения для X(x), Y(y) примут вид:

$$X''(x) = -\tilde{\mu}^2 X(x), \quad Y''(y) = -\tilde{\gamma}^2 Y(y).$$

б. Общие решения этих уравнений, как и в предыдущих задачах,

$$X(x) = c_1 \cos \tilde{\mu}x + c_2 \sin \tilde{\mu}x$$
, $Y(y) = d_1 \cos \tilde{\gamma}y + d_2 \sin \tilde{\gamma}y$.

в. Из граничных условий, как и в предыдущих задачах, получим:

$$c_1 = 0$$
, $\sin \tilde{\mu} = 0$, $\tilde{\mu} = \pi n$ $(n = 1, 2, 3, ...)$, $X_n(x) = \sin \pi n x$, $d_1 = 0$, $\sin \tilde{\gamma} = 0$, $\tilde{\gamma} = \pi k$ $(k = 1, 2, 3, ...)$, $Y_n(y) = \sin \pi k y$.

4. Отыскание функций T(t) из уравнения $T''(t) = \lambda a^2 T(t)$

Составим характеристическое уравнение: $s^2 = \lambda a^2$.

Так как
$$\lambda = \mu + \gamma = -\tilde{\mu}^2 - \tilde{\gamma}^2 = -\pi^2 \left(n^2 + k^2 \right)$$
, то $s = \pm i \pi \, a \sqrt{n^2 + k^2} = \pm i \, \beta_{nk}$, где $\beta_{nk} = \pi a \sqrt{n^2 + k^2}$. Тогда общее решение дифференциального уравнения $T_{nk} \left(t \right) = c_{nk} \cos \beta_{nk} \, t + d_{nk} \sin \beta_{nk} \, t$.

5. Отыскание искомого решения в виде

$$u(x,y,t) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} T_{nk}(t) X_n(x) Y_k(y) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} [c_{nk} \cos \beta_{nk} t + d_{nk} \sin \beta_{nk} t] \sin \pi nx \sin \pi ky.$$

Подставляя эту функцию в начальные условия задачи (4.7), получим:

$$u\Big|_{t=0} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} c_{nk} \sin \pi nx \sin \pi ky = 7 \sin 3\pi x \sin 4\pi y \implies c_{34} = 7, \ c_{nk} = 0 \ (n \neq 3, k \neq 4),$$
$$u_t\Big|_{t=0} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} d_{nk} \beta_{nk} \sin \pi nx \sin \pi ky = 0 \implies d_{nk} = 0.$$

Подставляя найденные коэффициенты c_{nk} , d_{nk} в решение

$$u(x,y,t) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left[c_{nk} \cos \beta_{nk} t + d_{nk} \sin \beta_{nk} t \right] \sin \pi nx \sin \pi ky,$$

ПОЛУЧИМ $u(x, y, t) = c_{34} \cos \beta_{34} t \sin 3\pi x \sin 4\pi y = 7 \cos 5\pi a t \sin 3\pi x \sin 4\pi y$.

Пример 4.4. Найти распределение температуры в однородном шаре, если на поверхности шара поддерживается нулевая температура, а начальная температура равна u_0 .

Решение. Распределение тепла в шаре описывается уравнением теплопроводности вида (3.2)

$$u_t = a^2 \Delta u$$
, где $\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r}$.

Оператор Лапласа записан в сферической системе координат r, θ, φ , причем учтено, что функция u является функцией только переменных r, t, так как условия задачи не зависят от θ, φ .

Точка r=0 является особой точкой оператора Лапласа, поэтому в этой точке следует потребовать ограниченности функции: $|u_{r=0}| < \infty$.

На поверхности шара поддерживается нулевая температура, т.е. $u\big|_{r=R}=0$.

Начальная температура равна u_0 , т.е. $u\big|_{t=0}=u_0$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_{t} = a^{2} \Delta u, & \Delta u = \frac{\partial^{2} u}{\partial r^{2}} + \frac{2}{r} \frac{\partial u}{\partial r}, \\ |u_{r=0}| < \infty, & u|_{r=R} = 0, \\ u|_{t=0} = u_{0}. \end{cases}$$

$$(4.8)$$

Функция u = 0 удовлетворяет граничным условиям и дифференциальному уравнению, т.е. граничные условия и уравнение являются однородными. Поэтому применим метод Фурье. Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде u(r,t) = X(r) T(t)

Подставим $u(r,t) = X(r) \cdot T(t)$ в дифференциальное уравнение задачи (4.8):

$$X(r) \cdot T'(t) = a^2 T(t) \cdot \Delta X(r)$$
.

Разделим это равенство на $a^2X(r)T(t)$:

$$\frac{T'(t)}{a^2T(t)} = \frac{\Delta X(r)}{X(r)}.$$

Первая дробь зависит только от t, вторая дробь зависит только от r, поэтому равенство возможно лишь тогда, когда эти дроби равны постоянной:

$$\frac{T'(t)}{a^2T(t)} = \frac{\Delta X(r)}{X(r)} = \lambda.$$

Отсюда получим два уравнения

$$T'(t) = \lambda a^2 T(t), \quad \Delta X(r) = \lambda X(r).$$

2. Перенос однородных граничных условий

Подставим $u(r,t) = X(r) \cdot T(t)$ в граничные условия задачи (4.8):

$$\begin{aligned} & \left| u \right|_{r=0} \left| = \left| X(0) \cdot T(t) \right| < \infty \quad \Rightarrow \quad \left| X(0) \right| < \infty, \\ & u \right|_{r=R} = 0 = X(R) \cdot T(t), \quad \Rightarrow \quad X(R) = 0. \end{aligned}$$

Здесь мы воспользовались тем, что $T(t) \neq 0$, иначе бы $u(r,t) = X(r) \cdot T(t) = 0$ и не удовлетворяло ненулевому начальному условию.

3. Решение задачи для функции X(r):

$$\begin{cases} \Delta X(r) = \lambda X(r), \\ |X(0)| < \infty, X(R) = 0 \end{cases}$$

а. Дифференциальный оператор имеет вид

$$\Delta X(r) = X''(r) + \frac{2}{r} \cdot X'(r) = AX'' + BX' + CX$$
, где $A = 1$, $B = \frac{2}{r}$, $C = 0$.

Так как A>0, C=0, то значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $\Delta X(r) = \lambda \, X(r)$ примет вид:

$$X''(r) + \frac{2}{r} \cdot X'(r) = -\mu^2 X(r)$$
 или $\underbrace{r X''(r) + 2X'(r)}_{= (rX)''} = -\mu^2 r X(r)$.

б. Введя Y(r) = rX(r), получим однородное линейное дифференциальное уравнение с постоянными коэффициентами $Y''(r) = -\mu^2 Y(r)$. Для его решения составим характеристическое уравнение: $s^2 = -\mu^2$. Его решения $s = \pm \mu i$, а общее решение дифференциального уравнения

$$Y(r) = c_1 \cos \mu r + c_2 \sin \mu r \implies X(r) = \frac{Y(r)}{r} = c_1 \frac{\cos \mu r}{r} + c_2 \frac{\sin \mu r}{r}$$

в. Воспользуемся граничными условиями $|X(0)| < \infty$, X(R) = 0. Из граничного условия $|X(0)| < \infty$ имеем $c_1 = 0$, так как

$$\lim_{r\to 0} \frac{\cos \mu r}{r} = \infty, \lim_{r\to 0} \frac{\sin \mu r}{r} = \mu.$$

При $c_1 = 0$ имеем $X(r) = c_2 \frac{\sin \mu r}{r}$. Так как собственные функции есть ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_2 = 1$. Из граничного условия X(R) = 0 получим

$$X(R) = \frac{\sin \mu R}{R} = 0 \implies \sin \mu R = 0, \quad \mu R = \pi k, \quad \mu_k = \frac{\pi k}{R} \quad (k = 1, 2, ...).$$

Итак, собственные функции

$$X_k(r) = \frac{\sin \mu_k r}{r}$$
, где $\mu_k = \frac{\pi k}{R}$ $(k = 1, 2, ...)$.

г. Найдем вес ортогональности собственных функций оператора LX = AX'' + BX' + CX, где A = 1, $B = \frac{2}{r}$, C = 0:

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dr\right) = \exp\left(\int \frac{2}{r} dr\right) = e^{2 \ln r} = e^{\ln r^2} = r^2.$$

4. Отыскание функций $T_k(t)$ из уравнения $T_k'(t) = -a^2 \mu_k^2 T_k(t)$

Запишем уравнение в виде $\frac{d T_k(t)}{d t} = -a^2 \mu_k^2 T_k(t)$. Разделим переменные

$$\frac{d T_k(t)}{T_k(t)} = -a^2 \mu_k^2 dt$$

и проинтегрируем это равенство. Получим $\ln T_k(t) = -a^2 \mu_k^2 t + \ln c_k$ или

$$T_k(t) = c_k e^{-a^2 \mu_k^2 t}$$
.

5. Отыскание искомого решения в виде

$$u(r,t) = \sum_{k=1}^{\infty} u_k(r,t) = \sum_{k=1}^{\infty} T_k(t) X_k(r) = \sum_{k=1}^{\infty} c_k e^{-a^2 \mu_k^2 t} X_k(r)$$
 (4.9)

Подставляя эту функцию в начальное условие задачи (4.8), получим:

$$u\Big|_{t=0} = \sum_{k=1}^{\infty} c_k X_k(r) = u_0 \implies c_k = \frac{\left(u_0, X_k\right)}{\left(X_k, X_k\right)}.$$

Вычислим коэффициент c_k , учитывая вес ортогональности r^2 функций $X_k(r)$:

$$(u_0, X_k) = \int_0^R u_0 r^2 X_k(r) dr = u_0 \int_0^R r^2 \frac{\sin \mu_k r}{r} dr = u_0 \int_0^R \underbrace{r \sin \mu_k r dr}_{=dv} = u_0 \left(r \frac{-\cos \mu_k r}{\mu_k} \Big|_0^R + \int_0^R \frac{\cos \mu_k r}{\mu_k} dr \right) =$$

$$= u_0 \left(R \frac{-\cos \mu_k R}{\mu_k} + \frac{\sin \mu_k r}{\mu_k^2} \Big|_0^R \right) = u_0 \left(R \frac{-\cos \pi k}{\mu_k} + \frac{\sin \pi k}{\mu_k^2} \right) = u_0 R \frac{(-1)^{k+1}}{\mu_k},$$

$$(X_k, X_k) = \int_0^R r^2 X_k^2(r) dr = \int_0^R \sin^2(\mu_k r) dr = \int_0^R \frac{1 - \cos(2\mu_k r)}{2} dr = \frac{1}{2} \left(r - \frac{\sin(2\mu_k r)}{2\mu_k} \Big|_0^R \right) = \frac{R}{2}.$$

Тогда $c_k = \frac{(u_0, X_k)}{(X_k, X_k)} = 2u_0 \frac{(-1)^{k+1}}{\mu_k}$. Подставим эти коэффициенты в решение (4.9):

$$u(r,t) = \sum_{k=1}^{\infty} c_k e^{-a^2 \mu_k^2 t} X_k(r) = 2u_0 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{\mu_k} e^{-a^2 \mu_k^2 t} \frac{\sin \mu_k r}{r}, \text{ где } \mu_k = \frac{\pi k}{R}.$$

4.2. Метод Фурье для неоднородного уравнения и однородных граничных условий

Рассмотрим метод Фурье на примере **неоднородного** уравнения $u_t = Lu + f\left(M,t\right)$, **однородного** граничного условия $\left(\alpha u + \beta \frac{\partial u}{\partial n}\right)_{(\sigma)} = 0$ и начального условия $u\big|_{t=0} = \phi\left(M\right)$.

Метод Фурье решения такой задачи состоит из следующих этапов.

1. Отыскание собственных функций $X_k(M)$ задачи

$$LX = \lambda X, \quad \left(\alpha X + \beta \frac{\partial X}{\partial n}\right)_{(\sigma)} = 0.$$

2. Разложение в ряд Фурье по системе $X_k(M)$ функций $u(M,t), f(M,t), \varphi(M)$:

$$u(M,t) = \sum_{k=0}^{\infty} T_k(t) \cdot X_k(M), \quad f(M,t) = \sum_{k=0}^{\infty} f_k(t) \cdot X_k(M), \quad \varphi(M) = \sum_{k=0}^{\infty} \varphi_k \cdot X_k(M);$$

коэффициенты $T_k(t)$ будут найдены далее; коэффициенты f_k , φ_k находятся по формулам $f_k = \frac{(f,X_k)}{(X_k,X_k)}, \ \varphi_k = \frac{(\varphi,X_k)}{(X_k,X_k)}.$

- 3. Подстановка рядов для функций u(M,t), f(M,t), $\varphi(M)$ в дифференциальное уравнение и в начальные условия.
- 4. Отыскание функций $T_{k}(t)$ и запись искомого решения

$$u(M,t) = \sum_{k=1}^{\infty} X_k(M) \cdot T_k(t)$$
.

Пример 4.5. На однородную струну, закрепленную на концах x = 0, $x = \pi$, действует сила постоянной плотности Q. Начальные отклонения и начальные скорости отсутствуют. Найти смещения u(x,t) точек струны.

Решение. Запишем уравнение колебаний струны:

$$\gamma \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2} + Q$$
, или $u_{tt} = a^2 u_{xx} + q$, где $a^2 = \frac{T}{\gamma}$, $q = \frac{Q}{\gamma}$.

Тогда математическая постановка задачи имеет вид

$$\begin{cases} u_{tt} = a^2 u_{xx} + q, \\ u|_{x=0} = 0, \quad u|_{x=\pi} = 0, \\ u|_{t=0} = 0, \quad u_t|_{t=0} = 0. \end{cases}$$

$$(4.10)$$

Дифференциальное уравнение этой задачи — неоднородное, так как функция $u \equiv 0$ ему не удовлетворяет. Граничные условия — однородные. Поэтому решение задачи состоит из следующих этапов.

1. Отыскание собственных функций $X_k(x)$ задачи $\begin{cases} LX = X'' = \lambda X, \\ X(0) = 0, \quad X(\pi) = 0 \end{cases}$

- а. Дифференциальный оператор имеет вид LX = AX'' + BX' + CX, где A = 1, B = 0, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $X''(x) = \lambda X(x)$ примет вид $X''(x) = -\mu^2 X(x)$.
- б. Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение $s^2 = -\mu^2$. Его решения $s = \pm \mu i$, а общее решение дифференциального уравнения

$$X(x) = c_1 \cos \mu x + c_2 \sin \mu x .$$

в. Воспользуемся граничными условиями X(0) = 0, $X(\pi) = 0$. Из граничного условия X(0) = 0 имеем $c_1 = 0$ и $X(x) = c_2 \sin \mu x$. Так как собственные функции — это ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_2 = 1$. Из условия $X(\pi) = 0$ получим

$$\sin \mu \pi = 0$$
, $\mu \pi = \pi k$, $\mu_k = k$ $(k = 1, 2, ...)$.

Итак, собственные функции $X_k(x) = \sin kx$ (k = 1, 2, ...).

2. Разложение всех функций задачи в ряд Фурье по системе $X_k(x)$

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x);$$

$$q = \sum_{k=1}^{\infty} q_k X_k(x), \quad q_k = \frac{(q, X_k)}{(X_k, X_k)},$$

$$u|_{t=0} = 0 = \sum_{k=1}^{\infty} 0 \cdot X_k(x), \quad u_t|_{t=0} = 0 = \sum_{k=1}^{\infty} 0 \cdot X_k(x).$$

Найдем коэффициенты Фурье q_k :

$$(q, X_k) = \int_0^\pi q \sin kx \, dx = -q \left(\frac{\cos kx}{k}\right) \Big|_0^\pi = -\frac{q}{k} (\cos k\pi - 1) = \begin{cases} 0, & k = 2n, \\ \frac{2q}{k}, & k = 2n + 1. \end{cases}$$

$$(X_k, X_k) = \int_0^\pi \sin^2 kx \, dx = \int_0^\pi \frac{1 - \cos 2kx}{2} \, dx = \frac{1}{2} \left(x - \frac{\sin 2kx}{2k}\right) \Big|_0^\pi = \frac{\pi}{2} \, .$$
 Тогда
$$q = \sum_{k=1}^\infty q_k \, X_k(x), \quad \text{где } q_k = \frac{(q, X_k)}{(X_k, X_k)} = \begin{cases} 0, & k = 2n, \\ \frac{4q}{\pi k}, & k = 2n + 1. \end{cases}$$

3. Подстановка рядов в дифференциальное уравнение и в начальные условия задачи (4.10)

а) из дифференциального уравнения

$$\sum_{k=1}^{\infty} T_k''(t) X_k(x) = \sum_{k=1}^{\infty} a^2 T_k(t) X_k''(x) + \sum_{k=1}^{\infty} q_k X_k(x);$$

учитывая, что $X_k''(x) = -\mu_k^2 X_k(x) = -k^2 X_k(x)$, и, сравнивая коэффициенты при $X_k(x)$, получим дифференциальные уравнения для функций $T_k(t)$:

$$T_k''(t) = -a^2k^2 T_k(t) + q_k;$$

б) из начальных условий:

$$\sum_{k=1}^{\infty} T_k(0) X_k(x) = \sum_{k=1}^{\infty} 0 \cdot X_k(x) \implies T_k(0) = 0,$$

$$\sum_{k=1}^{\infty} T_k'(0) X_k(x) = \sum_{k=1}^{\infty} 0 \cdot X_k(x) \implies T_k'(0) = 0.$$

Отметим, что граничные условия были учтены при отыскании функций $X_k(x)$. Итак, получили следующую задачу для функций $T_k(t)$:

$$\begin{cases}
T_k''(t) = -a^2 k^2 T_k(t) + q_k, \\
T_k(0) = 0, \quad T_k'(0) = 0.
\end{cases}$$
(4.11)

4. Отыскание решений $T_k(t)$ задачи (4.11)

Дифференциальное уравнение задачи (4.11) – неоднородное, поэтому сначала решим соответствующее однородное уравнение

$$T_k''(t) + a^2k^2 T_k(t) = 0.$$

Его решение $\overline{T_k}(t) = c_k \cos(akt) + d_k \sin(akt)$.

Теперь найдем частное решение $\widetilde{T}_{k}\left(t\right)$ неоднородного уравнения

$$T_k''(t) + a^2k^2 T_k(t) = q_k$$
.

Так как правая часть этого уравнения постоянна, то частное решение ищем в виде постоянной $\widetilde{T_k}(t) = A_k$. Подставив частное решение в уравнение, получим

$$a^2k^2A_k = q_k \implies A_k = \frac{q_k}{a^2k^2}.$$

Тогда общее решение неоднородного уравнения

$$T_k(t) = \overline{T_k}(t) + \widetilde{T_k}(t) = c_k \cos akt + d_k \sin akt + A_k$$
.

Воспользуемся начальными условиями задачи (4.11):

$$T_k(0) = 0 \implies c_k + A_k = 0, \quad c_k = -A_k,$$

 $T_k'(0) = 0 \implies d_k \cdot a \cdot k = 0, \quad d_k = 0.$

Тогда решение задачи (4.11) имеет вид:

$$T_k(t) = -A_k \cos akt + A_k = A_k (1 - \cos akt), \quad A_k = \frac{q_k}{a^2 k^2}.$$

5. Запись искомого решения

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x) = \sum_{k=1}^{\infty} A_k (1 - \cos akt) \sin kx, \quad A_k = \frac{q_k}{a^2 k^2}.$$

Так как $q_k = \begin{cases} 0, & k = 2n, \\ 4q / \pi k, & k = 2n+1, \end{cases}$ то окончательно

$$u(x,t) = \sum_{n=0}^{\infty} \frac{4q}{a^2 \pi (2n+1)^3} (1 - \cos(2n+1)at) \sin(2n+1)x.$$
Пример 4.6. Решить задачу:
$$\begin{cases} u_t = Lu + 4x^2 - 2 - 6x, & Lu = u_{xx} - 2xu_x, \\ |u|_{x=\pm 1}| < \infty, \\ u|_{t=0} = 0. \end{cases}$$
(4.12)

Решение. Дифференциальное уравнение этой задачи — неоднородное, так как функция $u \equiv 0$ ему не удовлетворяет. Граничные условия — однородные. Поэтому решение задачи состоит из следующих этапов.

1. Отыскание собственных функций
$$X_k(x)$$
 задачи
$$\begin{cases} LX = X'' - 2xX = \lambda X, \\ |X|_{x=\pm 1}| < \infty. \end{cases}$$

Оператор LX = X'' - 2xX имеет переменные коэффициенты, поэтому следует его поискать в таблицах специальных функций. Собственными функциями этого оператора являются многочлены Эрмита $H_k(x)$, а собственными значениями $\lambda_k = -2k$ (см. табл. Π . 1.2).

2. Разложение всех функций задачи в ряд Фурье по системе $X_k(x) = H_k(x)$:

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) H_k(x);$$

$$4x^2 - 2 - 6x = H_2(x) - 3H_1(x);$$

$$u|_{t=0} = 0 = \sum_{k=1}^{\infty} 0 \cdot H_k(x).$$

- 3. Подстановка рядов в дифференциальное уравнение и в начальные условия задачи (4.12):
- а) из дифференциального уравнения

$$\sum_{k=1}^{\infty} T_k'(t) \cdot H_k(x) = \sum_{k=1}^{\infty} T_k(t) \cdot \underbrace{LH_k(x)}_{=\lambda_k H_k(x)} + H_2(x) - 3H_1(x);$$

сравнивая коэффициенты при $H_k(x)$, получим дифференциальные уравнения для функций $T_k(t)$:

$$T'_{k}(t) = \lambda_{k} T_{k}(t) \quad (k \neq 2, k \neq 1); \quad T'_{2}(t) = \lambda_{2} T_{2}(t) + 1, T'_{1}(t) = \lambda_{1} T_{1}(t) - 3;$$

б) из начальных условий:
$$u|_{t=0} = \sum_{k=1}^{\infty} T_k(0) \cdot H_k(x) = \sum_{k=1}^{\infty} 0 \cdot H_k(x) \implies T_k(0) = 0.$$

Отметим, что граничные условия были учтены при отыскании функций $X_k(x)$. Итак, получили следующие задачи для функций $T_k(t)$:

$$\begin{cases}
T'_k(t) = \lambda_k T_k(t), & (k \neq 2, k \neq 1), \\
T_k(0) = 0
\end{cases}
\begin{cases}
T'_2(t) = \lambda_2 T_2(t) + 1, \\
T_2(0) = 0,
\end{cases}
\begin{cases}
T'_1(t) = \lambda_1 T_1(t) - 3, \\
T_1(0) = 0.
\end{cases}$$
(4.13)

4. Отыскание решений $T_k(t)$ задач (4.13)

Дифференциальные уравнения задач (4.13) — с разделяющимися переменными. Разделим переменные

$$\frac{d T_k(t)}{T_k(t)} = \lambda_k d t \quad (k \neq 2, k \neq 1), \quad \frac{d T_2(t)}{\lambda_2 T_2(t) + 1} = d t, \quad \frac{d T_1(t)}{\lambda_1 T_1(t) - 3} = d t$$

и проинтегрируем эти равенства. Получи

$$\ln T_k(t) = \lambda_k t + \ln c_k \quad (k \neq 2, k \neq 1), \quad \ln \left[\lambda_2 T_2(t) + 1\right] = \lambda_2 t + \ln c_2, \quad \ln \left[\lambda_1 T_1(t) - 3\right] = \lambda_1 t + \ln c_1 \implies T_k(t) = c_k e^{\lambda_k t} (k \neq 2, k \neq 1), \quad \lambda_2 T_2(t) + 1 = c_2 e^{\lambda_2 t}, \quad \lambda_1 T_1(t) - 3 = c_1 e^{\lambda_1 t}.$$

Воспользуемся начальными условиями задач (4.13):

$$T_k(0) = 0 \implies c_k = 0, (k \neq 2, k \neq 1),$$

 $T_2(0) = 0 \implies c_2 = 1, T_1(0) = 0 \implies c_1 = -3.$

Тогда решения задач (4.13) имеют вид:

$$T_k(t) = 0 \ (k \neq 2, k \neq 1), \quad T_2(t) = \frac{1}{\lambda_2} (e^{\lambda_2 t} - 1) = \frac{1}{-4} (e^{-4t} - 1), \quad T_1(t) = \frac{1}{-2} (-3e^{-2t} + 3).$$

5. Запись искомого решения

$$u(x,t) = \sum_{k=0}^{\infty} T_k(t) \cdot H_k(x) = T_1(t) \cdot H_1(x) + T_2(t) \cdot H_2(x) = 3(e^{-2t} - 1) \cdot x - \frac{1}{2}(e^{-4t} - 1)(2x^2 - 1).$$

4.3. Метод Фурье для задачи с неоднородными граничными условиями

Пусть граничные условия неоднородны и имеют вид

$$\begin{cases} \left(\alpha_{1} \cdot u - \beta_{1} \cdot u_{x}'\right) \Big|_{x=a} = g_{1}(t), \\ \left(\alpha_{2} \cdot u + \beta_{2} \cdot u_{x}'\right) \Big|_{x=b} = g_{2}(t), \end{cases}$$

$$(4.14)$$

$$\begin{cases} \left(\alpha_{1} \cdot u - \beta_{1} \cdot u'_{x}\right) \Big|_{x=a} = g_{1}(t), \\ \left(\alpha_{2} \cdot u + \beta_{2} \cdot u'_{x}\right) \Big|_{x=b} = g_{2}(t), \end{cases}$$

$$(4.14)$$
или
$$\begin{cases} \left|u\right|_{x=a} < \infty, \\ \left(\alpha \cdot u + \beta \cdot u'_{x}\right) \Big|_{x=b} = g(t). \end{cases}$$

Для решения задачи с неоднородными граничными условиями следует привести неоднородные граничные условия к однородным, а затем применить метод Фурье. Алгоритм решения следующий.

1. Найти какую-нибудь функцию w(x,t), удовлетворяющую неоднородным граничным условиям.

В зависимости от типа граничных условий следует искать эту функцию:

- для граничных условий (4.14) в виде $w(x,t) = \begin{cases} Ax^2 + Bx, & \text{если } \alpha_1 = \alpha_2 = 0, \\ Ax + B, & \text{в остальных случаях}; \end{cases}$
- для граничных условий (4.15) в виде $w(x,t) = \begin{cases} Ax, & \text{если } \alpha = 0, \\ A, & \text{в остальных случаях}. \end{cases}$

При подстановке функции w(x,t) в граничные условия найдем коэффициенты A, B для условий (4.14) или коэффициент A для условий (4.15).

2. Искать решение первоначальной задачи в виде

$$u(x,t) = v(x,t) + w(x,t)$$

и подставить его в дифференциальное уравнение, граничные условия и начальные условия. В результате получим задачу для функции v(x,t) с *однородными* граничными условиями.

3. Решить задачу для функции v(x,t) методом Фурье, изложенным ранее.

Пример 4.7. Дан тонкий однородный стержень, боковая поверхность которого теплоизолирована. Найти распределение температуры в стержне, если на конце x = 0 температура поддерживается равной u_1 , на другом конце x = l температура поддерживается равной u_2 , начальная температура равна u_0 .

Решение. Математическая постановка задачи имеет вид

$$\begin{cases}
 u_t = a^2 u_{xx}, \\
 u|_{x=0} = u_1, \ u \mid_{x=l} = u_2, \ u|_{t=0} = u_0.
\end{cases}$$
(4.16)

Граничные условия неоднородны (функция u=0 им не удовлетворяет), поэтому сначала следует привести неоднородные граничные условия к однородным. Для этого найдем функцию w(x,t), удовлетворяющую неоднородным граничным условиям. Граничные условия имеют вид (4.14), где $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, поэтому будем искать функцию w(x,t) в виде

$$w(x,t) = Ax + B.$$

Так как $w\big|_{x=0}=B$, а из условия задачи $w\big|_{x=0}=u_1$, то $B=u_1$. Кроме того, $w\big|_{x=l}=A\cdot l+B$,

а из условия задачи $w\big|_{x=l} = u_2$. Поэтому $Al + B = u_2 \implies A = \frac{u_2 - u_1}{l}$. Тогда

$$w = \frac{u_2 - u_1}{I} x + u_1$$
.

Решение задачи (4.16) будем искать в виде

$$u(x,t) = v(x,t) + w(x,t)$$
, где $w = \frac{u_2 - u_1}{l}x + u_1$.

Подставляя u(x,t) = v(x,t) + w(x,t) в дифференциальное уравнение задачи (4.16) и учитывая, что $w_t = 0$, $w_{xx} = 0$, получим

$$v_t + w_t = a^2 \left(v_{xx} + w_{xx} \right) \implies v_t = a^2 v_{xx}$$
.

Подставляя u(x,t) = v(x,t) + w(x,t) в граничные условия задачи (4.16) и учитывая, что $w\big|_{x=0} = u_1$, $w\big|_{x=l} = u_2$, получим

$$\begin{cases} u \big|_{x=0} = v \big|_{x=0} + w \big|_{x=0} = u_1, \\ u \big|_{x=l} = v \big|_{x=l} + w \big|_{x=l} = u_2, \end{cases} \Rightarrow \begin{cases} v \big|_{x=0} = 0, \\ v \big|_{x=l} = 0. \end{cases}$$

Подставляя u(x,t) = v(x,t) + w(x,t) в начальное условие задачи (4.16) и учитывая, что $u|_{t=0} = u_0$, получим

$$u|_{t=0} = v|_{t=0} + w|_{t=0} = u_0 \implies v|_{t=0} = u_0 - w|_{t=0} = u_0 - u_1 - \frac{u_2 - u_1}{l}x.$$

Итак, для функции v(x,t) получили задачу

$$\begin{cases} v_t = a^2 v_{xx}, \\ v|_{x=0} = 0, \quad v|_{x=l} = 0, \quad \text{где } g(x) = u_0 - u_1 - \frac{u_2 - u_1}{l} x. \\ v|_{t=0} = g(x), \end{cases}$$
(4.17)

Это — задача с однородными граничными условиями и однородным уравнением. Ее решение было получено в примере 4.1 для другой функции g(x). Воспользуемся этим решением (см. формулу (4.2)):

$$v(x,t) = \sum_{k=1}^{\infty} c_k e^{-a^2 \mu_k^2 t} X_k(x), \quad X_k(x) = \sin \mu_k x, \quad \mu_k = \frac{\pi k}{l}.$$

Подставим функцию v(x,t) в начальное условие задачи (4.15):

$$v\Big|_{t=0} = \sum_{k=0}^{\infty} c_k X_k(x) = g(x) \implies c_k = \frac{(g, X_k)}{(X_k, X_k)}.$$

Коэффициенты c_k вычислите самостоятельно. Подставляя эти коэффициенты в решение, получим

$$u(x,t) = v(x,t) + w(x,t) = \sum_{k=0}^{\infty} c_k e^{-a^2 \mu_k^2 t} \sin \mu_k x + \frac{u_2 - u_1}{l} x + u_1.$$

Пример 4.8. Исследовать радиальное распределение тепла в бесконечном круговом цилиндре радиусом R, боковая поверхность которого поддерживается при постоянной температуре u_0 . Начальная температура внутри цилиндра равна нулю.

Решение. Распределение тепла описывается уравнением теплопроводности

$$u_t = a^2 \Delta u$$
, $\Delta u = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho}$.

Оператор Лапласа записан в цилиндрической системе координат. Функция u является функцией только переменных ρ , t, так как условия задачи не зависят от φ , z. Точка $\rho=0$ является особой точкой оператора Лапласа, поэтому в этой точке потребуем ограниченности функции: $|u_{\rho=0}|<\infty$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} u_t = a^2 \Delta u, \\ \left| u_{\rho=0} \right| < \infty, \quad u \right|_{\rho=R} = u_0, \\ u \right|_{t=0} = 0. \end{cases}$$

$$(4.18)$$

Граничное условие при $\rho = R$ является неоднородным, поэтому сначала следует привести неоднородное граничное условие к однородному. Для этого найдем функцию $w(\rho,t)$, удовлетворяющую неоднородным граничным условиям. Гра-

ничные условия имеют вид (4.15), где $\alpha \neq 0$, поэтому будем искать функцию $w(\rho,t)$ в виде $w(\rho,t)=A$. Так как $w\big|_{\rho=R}=u_0$, то $A=u_0$, $w=u_0$.

Решение задачи (4.16) будем искать в виде

$$u(\rho,t) = v(\rho,t) + w(\rho,t)$$
, где $w = u_0$.

Подставляя $u(\rho,t)=v(\rho,t)+w(\rho,t)$ в дифференциальное уравнение задачи (4.18) и учитывая, что $w_t=0$, $\Delta w=0$, получим

$$v_t + w_t = a^2 (\Delta v + \Delta w) \implies v_t = a^2 \Delta v$$
.

Подставляя $u(\rho,t)=v(\rho,t)+w(\rho,t)$ в граничные условия задачи (4.18) и учитывая, что $\left|w_{\rho=0}\right|<\infty$, $w_{\rho=R}=u_0$, получим

$$\begin{cases} \left| u_{\rho=0} \right| \leq \left| v_{\rho=0} \right| + \left| w_{\rho=0} \right| < \infty, \\ \left| u_{\rho=R} \right| = v_{\rho=R} + w_{\rho=R} = u_{0}, \end{cases} \Rightarrow \begin{cases} \left| v_{\rho=0} \right| < \infty, \\ \left| v_{\rho=R} \right| = 0. \end{cases}$$

Подставляя $u(\rho,t) = v(\rho,t) + w(\rho,t)$ в начальное условие задачи (4.18) и учитывая, что $w|_{t=0} = u_0$, получим

$$u|_{t=0} = v|_{t=0} + w|_{t=0} = 0 \implies v|_{t=0} = -u_0$$
.

Итак, для функции $v(\rho,t)$ получили задачу

$$\begin{cases} v_t = a^2 \Delta v, \\ \left| v_{\rho=0} \right| < \infty, \quad v \right|_{\rho=R} = 0, \\ v \right|_{t=0} = -u_0. \end{cases}$$

$$(4.19)$$

Это – задача с однородными граничными условиями и однородным уравнением. Поэтому применим метод Фурье. Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде $v(\rho,t) = X(\rho)T(t)$

Подставим $v(\rho,t) = X(\rho)T(t)$ в дифференциальное уравнение задачи (4.19):

$$X(\rho) T'(t) = a^2 T(t) \Delta X(\rho).$$

Разделим переменные: $\frac{T'(t)}{a^2T(t)} = \frac{\Delta X(\rho)}{X(\rho)}$.

Дробь в левой части этого равенства зависит только от t, в правой части — только от ρ ; поэтому равенство возможно лишь тогда, когда эти дроби равны постоянной, обозначим ее λ . Тогда из равенства

$$\frac{T'(t)}{a^2T(t)} = \frac{\Delta X(\rho)}{X(\rho)} = \lambda$$

получим два уравнения

$$T'(t) = \lambda a^2 T(t), \qquad \Delta X(\rho) = \lambda X(\rho).$$

2. Перенос однородных граничных условий на функцию X(ho)

Подставим v(x,t) = X(x) T(t) в граничные условия задачи (4.19):

$$|X(0)T(t)| < \infty; \quad X(R)T(t) = 0.$$

Получим $|X(0)| < \infty$; X(R) = 0.

3. Решение задачи для функции $X(\rho)$:

$$\begin{cases} \Delta X(\rho) = \lambda X(\rho), \\ |X(0)| < \infty, \quad X(R) = 0. \end{cases}$$

а. Дифференциальный оператор имеет вид $\Delta X(\rho) = X''(\rho) + \frac{1}{\rho}X'(\rho)$, где A = 1, $B = \frac{1}{\rho}$, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение

$$\Delta X(\rho) = \lambda X(\rho)$$
 примет вид $X''(\rho) + \frac{1}{\rho} X'(\rho) = -\mu^2 X(\rho)$.

Умножив его на ρ^2 , получим уравнение Бесселя $\rho^2 X''(\rho) + \rho X'(\rho) + \mu^2 \rho^2 X(\rho) = 0$ с параметром s = 0; решение этого уравнения

$$X(\rho) = c_1 J_0(\mu \rho) + c_2 N_0(\mu \rho).$$

По условию функция $X(\rho)$ ограничена в нуле. Так как функция $N_0(\mu\rho)$ не ограничена в нуле, то, чтобы получить ограниченное в нуле решение, следует положить $c_2=0$. Кроме того, можно положить $c_1=1$, так как собственные функции определяются с точностью до постоянного множителя. Тогда $X(\rho)=J_0(\mu\rho)$.

Из условия X(R)=0 получим $J_0(\mu R)=0$. Это уравнение имеет множество корней μ_k , значения которых приведены в табл. П. 1.4. Соответствующие собственные функции $X_k(\rho)=J_0\big(\mu_k\,\rho\big)$ (k=1,2,3,...) ортогональны с весом ρ .

4. Отыскание функций $T_k(t)$ из уравнения $T_k'(t) = -a^2 \mu_k^2 T_k(t)$

Запишем уравнение в виде $\frac{dT_{k}\left(t\right)}{dt}$ = $-a^{2}\mu_{k}^{2}T_{k}\left(t\right)$. Разделим переменные:

$$\frac{dT_k(t)}{T_k(t)} = -a^2 \mu_k^2 dt$$

и проинтегрируем это равенство. Получим $\ln T_k(t) = -a^2 \mu_k^2 t + \ln c_k$ или

$$T_k(t) = c_k e^{-a^2 \mu_k^2 t}.$$

5. Отыскание искомого решения в виде $v(\rho,t) = \sum_{k=1}^{\infty} v_k(\rho,t) = \sum_{k=1}^{\infty} T_k(t) X_k(\rho)$

Подставим функцию

$$v(\rho,t) = \sum_{k=1}^{\infty} T_k(t) X_k(\rho) = \sum_{k=1}^{\infty} c_k e^{-a^2 \mu_k^2 t} X_k(\rho)$$

в начальное условие задачи (4.19):

$$v\Big|_{t=0} = \sum_{k=1}^{\infty} c_k X_k(\rho) = -u_0.$$

Получили ряд Фурье по ортогональной системе функций $X_k(\rho)$; коэффициенты Фурье найдем по формуле

$$c_k = \frac{\left(-u_0, X_k\right)}{\left(X_k, X_k\right)}.$$

Значение $(X_k, X_k) = ||X_k||^2$ приведено в табл. П. 1.4:

$$||X_k||^2 = \frac{R^2}{2} [J_0'^2(\mu_k R) + J_0^2(\mu_k R)] = \frac{R^2}{2} J_1^2(\mu_k R).$$

Здесь мы учли, что μ_k — корни уравнения $J_0(\mu R) = 0$ и $J_0'(x) = -J_1(x)$ из второго рекуррентного соотношения при s = 0 (табл. П. 1.4).

Теперь вычислим скалярное произведение

$$(-u_0, X_k) = -\int_0^R \rho \cdot u_0 \cdot X_k(\rho) d\rho = -u_0 \int_0^R \rho \cdot J_0(\mu_k \rho) d\rho = \begin{vmatrix} \mu_k \rho = \eta \\ d\rho = \frac{d\eta}{\mu_k} \end{vmatrix} = \frac{-u_0}{\mu_k^2} \int_0^{\mu_k R} \eta \cdot J_0(\eta) d\eta.$$

Из первого рекуррентного соотношения при s=0 (табл. П. 1.4) получим $\eta \cdot J_0(\eta) = (\eta \cdot J_1(\eta))'$. Поэтому

$$(-u_0, X_k) = \frac{-u_0}{\mu_k^2} \int_0^{\mu_k R} \eta J_0(\eta) d\eta = \frac{-u_0}{\mu_k^2} \int_0^{\mu_k R} (\eta J_1(\eta))' d\eta = \frac{-u_0}{\mu_k^2} (\eta J_1(\eta)) \bigg|_0^{\mu_k R} = \frac{-u_0 R}{\mu_k} J_1(\mu_k R).$$

Тогда

$$c_k = \frac{\left(-u_0, X_k\right)}{\left(X_k, X_k\right)} = \frac{\left(-u_0 R/\mu_k\right) J_1\left(\mu_k R\right)}{\left(R^2/2\right) J_1^2\left(\mu_k R\right)} = \frac{-2u_0}{R\mu_k J_1\left(\mu_k R\right)} \,.$$

В заключение следует подставить найденные коэффициенты c_k в решение

$$u(\rho,t) = w(\rho,t) + \sum_{k=0}^{\infty} c_k e^{-a^2 \mu_k^2 t} X_k(\rho) = u_0 - \frac{2u_0}{R} \sum_{k=0}^{\infty} \frac{1}{\mu_k J_1(\mu_k R)} e^{-a^2 \mu_k^2 t} J_0(\mu_k \rho).$$

4.4. Решение краевых задач для уравнения Лапласа

Мы рассмотрели применение метода Фурье для задач теплопроводности и колебаний. В первой задаче имеем уравнение параболического типа, во второй задаче — уравнение гиперболического типа. Теперь рассмотрим краевую задачу в области (D) с границей (L) для уравнения эллиптического типа. Простейшим уравнением такого типа является уравнение Лапласа $\Delta u = 0$. Запишем краевую задачу для такого уравнения:

$$\begin{cases}
\Delta u(M) = 0, & M \in (D), \\
\left(\alpha u + \beta \frac{\partial u}{\partial n}\right)_{L} = \varphi(M).
\end{cases}$$
(4.20)

Отметим особенности применения метода Фурье для таких задач.

- 1. Метод Фурье применим в области, ограниченной координатными поверхностями некоторой системы координат. При этом оператор Лапласа Δu следует записать в этой же системе координат.
- 2. Граничные условия записывают по каждой переменной; недостающие граничные условия записывают, например, из условия ограниченности, непрерывности, периодичности решения.
- 3. Если граничные условия неоднородны по нескольким переменным, то задачу разбивают на несколько задач, в каждой из которых граничные условия неоднородны только по одной из переменных. К каждой из этих задач применим метод Фурье.

Решение краевых задач для уравнения Лапласа в прямоугольнике

Пример 4.9. Найти распределение потенциала u(x,y) электростатического поля внутри прямоугольника [0 < x < a, 0 < y < b], если потенциал вдоль стороны этого прямоугольника, лежащей на оси OY, равен u_0 , а три другие стороны заземлены. Электрические заряды внутри прямоугольника отсутствуют.

Решение. Задача сводится к решению в прямоугольнике уравнения Лапласа $\Delta u = 0$ при краевых условиях $u \big|_{x=0} = u_0$, $u \big|_{x=a} = 0$, $u \big|_{y=0} = 0$, $u \big|_{y=b} = 0$. Область, в которой решается задача, есть прямоугольник, поэтому оператор Лапласа запишем в прямоугольной системе координат $\Delta u = u_{xx} + u_{yy}$. Таким образом, нужно решить следующую задачу:

$$\begin{cases} u_{xx} + u_{yy} = 0, \\ u \mid_{x=0} = u_0, \ u \mid_{x=a} = 0, \\ u \mid_{y=0} = 0, \ u \mid_{y=b} = 0. \end{cases}$$
(4.21)

Граничные условия по y и дифференциальное уравнение однородны (так как функция u = 0 им удовлетворяет). Поэтому применим метод Фурье.

Решение задачи состоит из следующих этапов.

1. Нахождение решения в виде u(x, y) = X(x)Y(y).

Подставим u(x,y) = X(x)Y(y) в дифференциальное уравнение задачи (4.21):

$$X''(x)Y(y)+X(x)Y''(y)=0.$$

Разделим переменные $-\frac{X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} = \lambda$;

получим два уравнения: $X''(x) = -\lambda X(x)$, $Y''(y) = \lambda Y(y)$.

2. Перенос однородных граничных условий.

Подставим u(x,y) = X(x)Y(y) в однородные граничные условия задачи (4.21):

$$X(x)Y(0) = 0; X(x)Y(b) = 0.$$

Если X(x) = 0, то u(x,y) = X(x)Y(y) = 0 и не выполняется граничное условие $u|_{x=0} = u_0$. Поэтому $X(x) \neq 0$ и, следовательно, Y(0) = 0, Y(b) = 0.

3. Решение задачи для функции Y(y), удовлетворяющей однородным граничным условиям:

$$\begin{cases} Y''(y) = \lambda Y(y), \\ Y(0) = 0, Y(b) = 0. \end{cases}$$

а. Дифференциальный оператор имеет вид LY = AY'' + BY' + CY, где A = 1, B = 0, C = 0. Так как A > 0, C = 0, то собственные значения $\lambda \le 0$. Удобно записать отрицательное число λ в виде $\lambda = -\mu^2$. Тогда уравнение $Y''(y) = \lambda Y(y)$ примет вид $Y''(y) = -\mu^2 Y(y)$.

б. Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение: $s^2 = -\mu^2$. Его решения $s = \pm \mu i$, а общее решение дифференциального уравнения $Y(y) = c_1 \cos \mu y + c_2 \sin \mu y$.

в. Воспользуемся граничными условиями Y(0) = 0, Y(b) = 0. Из граничного условия Y(0) = 0 имеем $c_1 = 0$ и $Y(y) = c_2 \sin \mu y$. Так как собственные функции есть ненулевые функции, определяющиеся с точностью до постоянного множителя, то можно положить $c_2 = 1$. Из условия Y(b) = 0 получим

$$\sin \mu b = 0$$
, $\mu b = \pi k$, $\mu_k = \frac{\pi k}{b}$ $(k = 1, 2, ...)$.

Итак, собственные функции

$$Y_k = \sin \mu_k y$$
, где $\mu_k = \frac{\pi k}{b}$ $(k = 1, 2, 3, ...)$.

г. Найдем вес ортогональности собственных функций оператора LY = AY'' + BY' + CY , где A = 1, B = 0, C = 0 :

$$\rho = \frac{1}{|A|} \exp\left(\int \frac{B}{A} dy\right) = \exp\left(\int 0 dy\right) = e^0 = 1.$$

4. Нахождение функций $X_{k}(x)$ из уравнения $X''_{k}(x) = -\lambda_{k} X_{k}(x) = \mu_{k}^{2} X_{k}(x)$.

Для решения этого однородного линейного дифференциального уравнения с постоянными коэффициентами составим характеристическое уравнение $s^2 = \mu_k^2$. Его корни $s = \pm \mu_k$ действительны. Поэтому линейно независимыми решениями дифференциального уравнения являются функции $e^{\mu_k x}$, $e^{-\mu_k x}$, а также их полусумма $\operatorname{ch} \mu_k x$ и полуразность $\operatorname{sh} \mu_k x$. Общее решение уравнения удобно записать в виде

$$X_k(x) = c_k \operatorname{ch} \mu_k x + d_k \operatorname{sh} \mu_k x$$
.

5. Нахождение искомого решения в виде

$$u(x,y) = \sum_{k=1}^{\infty} u_k(x,y) = \sum_{k=1}^{\infty} X_k(x) Y_k(y) = \sum_{k=1}^{\infty} (c_k \cosh \mu_k x + d_k \sinh \mu_k x) Y_k(y).$$
 (4.22)

Подставим эту функцию в граничные условия по x задачи (4.21):

$$u\big|_{x=0} = u_0 = \sum_{k=1}^{\infty} c_k Y_k(y),$$

$$u\big|_{x=a} = 0 = \sum_{k=1}^{\infty} (c_k \cosh \mu_k a + d_k \sinh \mu_k a) Y_k(y).$$

Найдем коэффициенты Фурье

$$c_k = \frac{(u_0, Y_k)}{(Y_k, Y_k)}, \quad c_k \operatorname{ch} \mu_k a + d_k \operatorname{sh} \mu_k a = \frac{(0, Y_k)}{(Y_k, Y_k)} = 0.$$
 (4.23)

Для этого вычислим

$$(u_0, Y_k) = \int_0^b u_0 \sin \mu_k y \, dy = -u_0 \left(\frac{\cos \mu_k y}{k} \right) \Big|_0^b = -\frac{u_0}{k} \left(\cos \frac{\mu_k b}{2} - 1 \right) = \begin{cases} 0, & k = 2n, \\ \frac{2u_0}{k}, & k = 2n + 1. \end{cases}$$

$$(X_k, X_k) = \int_0^\pi \sin^2 kx \, dx = \int_0^\pi \frac{1 - \cos 2kx}{2} \, dx = \frac{1}{2} \left(x - \frac{\sin 2kx}{2k} \right) \Big|_0^\pi = \frac{\pi}{2} .$$

Тогда из формул (4.23) следует, что
$$c_k = \frac{\left(u_0, Y_k\right)}{\left(Y_k, Y_k\right)} = \begin{cases} 0, & k = 2n, \\ \frac{4u_0}{\pi k}, & k = 2n + 1, \end{cases}$$
 $d_k = -c_k \frac{\operatorname{ch} \mu_k a}{\operatorname{sh} \mu_k a}.$

Подставим эти значения коэффициентов c_k , d_k в равенство (4.22) и сделаем ряд преобразований:

$$u(x,y) = \sum_{k=1}^{\infty} (c_k \cosh \mu_k x + d_k \sinh \mu_k x) \cdot Y_k(y) =$$

$$= \sum_{k=1}^{\infty} c_k \left(\cosh \mu_k x - \frac{\cosh \mu_k a}{\sinh \mu_k a} \sinh \mu_k x \right) Y_k(y) =$$

$$= \sum_{k=1}^{\infty} c_k \left(\frac{\cosh \mu_k x \sinh \mu_k a - \cosh \mu_k a \sinh \mu_k x}{\sinh \mu_k a} \right) \sin(\mu_k y) =$$

$$= \frac{4u_0}{\pi} \sum_{n=0}^{\infty} \frac{\sinh \mu_{2n+1}(a-x)}{(2n+1)\sinh \mu_{2n+1} a} \sin(\mu_{2n+1}y), \quad \mu_{2n+1} = \frac{\pi(2n+1)}{b}.$$

Пример 4.10. Найти решение задачи в прямоугольнике

$$\begin{cases} u_{xx} + u_{yy} = -2, & x \in (0,a), y \in (0,b), \\ u\big|_{x=0} = 0, & u\big|_{x=a} = 0, \\ u\big|_{y=0} = 0, & u\big|_{y=b} = 0. \end{cases}$$

$$(4.24)$$

Граничные условия однородны (так как функция u = 0 им удовлетворяет), но дифференциальное уравнение неоднородно. Так как правая часть уравнения не зависит от x, то решение u(x,y) будем искать в виде

$$u(x,y) = v(x,y) + w(y),$$

где w(y) есть решение задачи

$$\begin{cases} w_{yy} = -2, & y \in (0,b), \\ w|_{y=0} = 0, & w|_{y=b} = 0. \end{cases}$$

Эта задача решается легко:

$$w_{yy} = -2 \implies w_y = -2y + c \implies w = -y^2 + cy + d,$$

$$w|_{y=0} = 0 \implies d = 0,$$

$$w|_{y=b} = 0 \implies -b^2 + cb = 0 \implies c = b,$$

$$\Rightarrow w = -y^2 + by = y(b - y).$$

Подставим u(x, y) = v(x, y) + w(y) в задачу (4.24):

$$\begin{cases} \left(v_{xx} + w_{xx} - v_{yy} + w_{yy} - v_{yy} - v_{yy}$$

Получили задачу такого же типа, как в примере 4.21. Поэтому решение v(x,y) имеет вид (4.22):

$$v(x,y) = \sum_{k=1}^{\infty} (c_k \cosh \mu_k x + d_k \sinh \mu_k x) Y_k(y).$$
 (4.26)

Подставим эту функцию в граничные условия по x задачи (4.25):

$$v|_{x=0} = -y(y-b) = \sum_{k=1}^{\infty} c_k Y_k(y),$$

$$v|_{x=a} = -y(y-b) = \sum_{k=1}^{\infty} (c_k \operatorname{ch} \mu_k a + d_k \operatorname{sh} \mu_k a) Y_k(y).$$

Найдем коэффициенты Фурье:

$$c_k = \frac{\left(-y(y-b), Y_k\right)}{\left(Y_k, Y_k\right)}, \quad c_k \cosh \mu_k a + d_k \sinh \mu_k a = \frac{\left(-y(y-b), Y_k\right)}{\left(Y_k, Y_k\right)} = c_k. \tag{4.27}$$

Для этого вычислим

$$-(y(b-y),Y_{k}) = -\int_{0}^{b} \underbrace{y(b-y)}_{=u} \underbrace{\sin \mu_{k} y \, dy}_{=dv} = \underbrace{y(b-y)}_{=dv} \underbrace{\left(\frac{\cos \mu_{k} y}{\mu_{k}}\right) \Big|_{0}^{b}}_{=0} + \int_{0}^{b} \underbrace{\left(\frac{b-2y}{\mu_{k}}\right)}_{=u} \underbrace{\frac{\cos \mu_{k} y}{\mu_{k}} \, dy}_{=dv} = \underbrace{\left(\frac{b-2y}{\mu_{k}}\right) \left(\frac{\sin \mu_{k} y}{\mu_{k}^{2}}\right) \left(\frac{\sin \mu_{k} y}{\mu_{k}^{2}}\right)$$

Тогда из формул (4.27) следует, что

$$c_{k} = \begin{cases} 0, & k = 2n, \\ \frac{8}{\pi \mu_{k}^{3}}, & k = 2n+1, \end{cases} d_{k} = c_{k} \frac{1 - \operatorname{ch} \mu_{k} a}{\operatorname{sh} \mu_{k} a} = c_{k} \frac{-2 \operatorname{sh}^{2} \frac{\mu_{k} a}{2}}{2 \operatorname{sh} \frac{\mu_{k} a}{2} \operatorname{ch} \frac{\mu_{k} a}{2}} = -c_{k} \frac{\operatorname{sh} \frac{\mu_{k} a}{2}}{\operatorname{ch} \frac{\mu_{k} a}{2}}.$$

Подставим эти значения коэффициентов c_k , d_k в равенство (4.26) и сделаем ряд преобразований:

$$v(x,y) = \sum_{k=1}^{\infty} \left(c_k \cosh \mu_k \, x + d_k \sinh \mu_k \, x \right) Y_k(y) =$$

$$= \sum_{k=1}^{\infty} c_k \left(\cosh \mu_k \, x + \frac{\sinh \frac{\mu_k \, a}{2}}{\cosh \frac{\mu_k \, a}{2}} \sinh \mu_k \, x \right) Y_k(y) =$$

$$= \sum_{k=1}^{\infty} c_k \left(\frac{\cosh \mu_k \, x \, \cosh \frac{\mu_k \, a}{2} + \sinh \frac{\mu_k \, a}{2}}{\cosh \mu_k \frac{a}{2}} \sinh \mu_k \, x \right) \sin(\mu_k y) =$$

$$= \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{\cosh \mu_{2n+1} \left(x + \frac{a}{2} \right)}{\mu_{2n+1}^3 \cosh \mu_{2n+1} \frac{a}{2}} \sin(\mu_{2n+1} y), \quad \mu_{2n+1} = \frac{\pi (2n+1)}{b},$$

$$u(x,y) = v(x,y) + w(y) = v(x,y) + y(b-y).$$

Решение краевых задач для уравнения Лапласа в цилиндре

Пример 4.11. Найти стационарное распределение температуры внутри однородного цилиндра радиусом R и высотой H, если нижнее и верхнее основания цилиндра поддерживаются при нулевой температуре, боковая поверхность цилиндра имеет постоянную температуру u_0 .

Решение. Стационарное распределение температуры u(M) описывается уравнением $\Delta u(M) = g(M)$. В нашем случае плотность тепловых источников g(M) = 0 и уравнение примет вид $\Delta u = 0$.

Задачу естественно решать в цилиндрической системе координат ρ , φ , z. Условия задачи не зависят от φ , поэтому функция u является функцией только переменных ρ , z. Оператор Лапласа следует взять в цилиндрической системе

координат и учесть, что u не зависит от φ , т.е. $\frac{\partial^2 u}{\partial \varphi^2} = 0$. Поэтому

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{\partial^2 u}{\partial z^2}.$$

Слагаемые $\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho}$ назовем радиальной частью оператора Лапласа и обозначим $\Delta_\rho u$. Тогда $\Delta u = \Delta_\rho \, u + u_{zz}$.

Центр круга $\rho=0$ является особой точкой оператора Лапласа, поэтому в этой точке ставится граничное условие: $\left|u\right|_{\rho=0}\left|<\infty\right|$.

Нижнее и верхнее основания цилиндра поддерживаются при нулевой температуре, т.е. $u\big|_{z=0}=0,\;u\big|_{z=h}=0$; температура боковой поверхности равна u_0 , т.е. $u\big|_{o=R}=u_0$.

Итак, имеем следующую математическую постановку задачи:

$$\begin{cases} \Delta u = \Delta_{\rho} u + u_{zz} = 0, \\ u|_{z=0} = 0, \quad u|_{z=h} = 0, \\ |u|_{\rho=0} |<\infty, \quad u|_{\rho=R} = u_0. \end{cases}$$
(4.28)

Граничные условия по z и дифференциальное уравнение однородны (так как функция u = 0 им удовлетворяет). Поэтому применим метод Фурье.

Решение задачи состоит из следующих этапов.

1. Отыскание решения в виде $u(\rho,z) = X(\rho) T(z)$.

Подставим $u(\rho, z) = X(\rho) \cdot T(z)$ в дифференциальное уравнение задачи (4.28):

$$\Delta_{\rho} X(\rho) T(z) + X(\rho) T''(z) = 0.$$

Разделим переменные:

$$\frac{T''(z)}{T(z)} = \frac{-\Delta_{\rho} X(\rho)}{X(\rho)}.$$

Дробь в левой части этого равенства зависит только от z, в правой части — только от ρ ; поэтому равенство возможно лишь тогда, когда эти дроби равны постоянной, обозначим ее λ . Тогда из равенства

$$\frac{T''(z)}{T(z)} = \frac{-\Delta_{\rho} X(\rho)}{X(\rho)} = \lambda$$

получим два уравнения

$$T''(z) = \lambda T(z), -\Delta_{\rho} X(\rho) = \lambda X(\rho).$$

2. Перенос однородных граничных условий

Подставим $u(\rho,z) = X(\rho) T(z)$ в однородные граничные условия:

$$|X(0)T(z)| < \infty$$
; $X(\rho)T(0) = 0$, $X(\rho)T(h) = 0$.

Получим $|X(0)| < \infty$, T(0) = 0, T(h) = 0. Здесь мы воспользовались тем, что $T(t) \neq 0$, $X(\rho) \neq 0$, иначе бы функция $u(\rho,z) = X(\rho) T(z) = 0$ и не удовлетворяла ненулевому граничному условию.

3. Решение задачи для функции T(z), удовлетворяющей однородным граничным условиям

$$\begin{cases} T''(z) = \lambda \ T(z), \\ T(0) = 0, \ T(h) = 0. \end{cases}$$

Как и в предыдущем примере (пункт 3), получим систему ортогональных с весом $\rho = 1$ функций

$$T_k = \sin \mu_k z$$
, где $\mu_k = \frac{\pi k}{h}$ $(k = 1, 2, 3, ...)$.

4. Отыскание функций $X_k(\rho)$ из уравнения

$$-\Delta_{\rho} X(\rho) = \lambda X(\rho) \implies -\Delta_{\rho} X(\rho) = -\mu_{k}^{2} X(\rho) \implies$$
$$\Rightarrow \Delta_{\rho} X(\rho) = \mu_{k}^{2} X(\rho) \implies X''(\rho) + \frac{1}{\rho} X'(\rho) = \mu_{k}^{2} X(\rho).$$

Умножив последнее уравнение на ρ^2 , получим модифицированное уравнение Бесселя

$$\rho^2 X''(\rho) + \rho X'(\rho) - \mu_k^2 \rho^2 X(\rho) = 0$$
.

Общее решение модифицированного уравнения Бесселя с параметром s=0 имеет вид

$$X(\rho) = c_1 I_0(\mu_k \rho) + c_2 K_0(\mu_k \rho).$$

Функция $X(\rho)$ ограничена в нуле, а функция $K_0(\mu\rho)$ не ограничена в нуле. Поэтому, чтобы получить ограниченное в нуле решение, следует положить $c_2=0$. Кроме того, можно положить $c_1=1$, так как собственные функции определяются с точностью до постоянного множителя. Тогда

$$X_k(\rho) = I_0(\mu_k \rho).$$

5. Отыскание искомого решения в виде $u(\rho,z) = \sum_{k=1}^{\infty} c_k u_k(\rho,z) = \sum_{k=1}^{\infty} c_k T_k(z) X_k(\rho)$.

Подставим функцию

$$u(\rho, z) = \sum_{k=1}^{\infty} c_k T_k(z) X_k(\rho) = \sum_{k=1}^{\infty} c_k \sin \mu_k z \ X_k(\rho)$$
 (4.29)

в граничное условие $u|_{\rho=R} = u_0$:

$$u|_{\rho=R} = u_0 = \sum_{k=1}^{\infty} c_k \sin \mu_k z \ X_k(R).$$

Получили ряд Фурье по ортогональной системе функций $\sin \mu_k z$. Коэффициенты при этих функциях $c_k X_k(R)$ найдем по формулам

$$c_k X_k(R) = \frac{\left(u_0, \sin \mu_k z\right)}{\left(\sin \mu_k z, \sin \mu_k z\right)},$$

$$\left(u_0, \sin \mu_k z\right) = \int_0^h u_0 \sin \mu_k z \, dz = u_0 \frac{-\cos \mu_k z}{\mu_k} \bigg|_0^h = u_0 \frac{-\cos \pi k + 1}{\mu_k} = \begin{cases} 0, & k = 2n, \\ \frac{2u_0}{\mu_k}, & k = 2n + 1, \end{cases}$$

$$\left(\sin \mu_k z, \sin \mu_k z\right) = \int_0^h \sin^2 \left(\mu_k z\right) dz = \int_0^h \frac{1 - \cos\left(2\mu_k z\right)}{2} dz = \frac{1}{2} \left(z - \frac{\sin\left(2\mu_k z\right)}{2\mu_k} \bigg|_0^h\right) = \frac{h}{2}.$$

Тогда
$$c_k = \begin{cases} 0, & k=2n, \\ \frac{4u_0}{\mu_k h \; X_k\left(R\right)}, & k=2n+1 \end{cases}$$
. Подставим эти коэффициенты в решение (4.29):

$$u(\rho,z) = \sum_{k=1}^{\infty} c_k T_k(z) X_k(\rho) = \sum_{n=0}^{\infty} c_{2n+1} T_{2n+1}(z) X_{2n+1}(\rho) = \sum_{n=0}^{\infty} \frac{4u_0}{\mu_{2n+1}h} \sin(\mu_{2n+1}z) \frac{I_0(\mu_{2n+1}\rho)}{I_0(\mu_{2n+1}R)}.$$

Решение краевых задач для уравнения Лапласа в круге, вне круга

Общее решение уравнения Лапласа в круговой области, как было выведено в теории, имеет вид

$$u(\rho,\varphi) = (a\ln\rho + b) + \sum_{k=1}^{\infty} \left[\left(a_k \rho^k + b_k \rho^{-k} \right) \cos k\varphi + \left(c_k \rho^k + d_k \rho^{-k} \right) \sin k\varphi \right].$$
 (4.30)

Коэффициенты a, b, a_k, b_k, c_k, d_k следует найти из граничных условий. Рассмотрим несколько случаев.

а. При решении уравнения Лапласа *в круге* $0 < \rho < R$ граничные условия первого рода имеют вид

$$|u|_{\rho=0}$$
 $|<\infty, u|_{\rho=R}=g(\varphi)$.

Так как $\ln \rho \to \infty, \ \rho^{-k} \to \infty$ при $\rho \to 0$, то из условия $\left|u\right|_{\rho=0} \left|<\infty \right|$ следует, что в формуле (4.30) нужно положить $a=0,\ b_k=0,\ d_k=0$. Тогда решение примет вид

$$u(\rho,\varphi) = b + \sum_{k=1}^{\infty} \left[\left(a_k \rho^k \right) \cos k\varphi + \left(c_k \rho^k \right) \sin k\varphi \right]. \tag{4.31}$$

Из граничного условия $u|_{\rho=R}=g(\varphi)$ следует, что

$$g(\varphi) = b + \sum_{k=1}^{\infty} \left[\left(a_k R^k \right) \cos k\varphi + \left(c_k R^k \right) \sin k\varphi \right] \implies$$

$$b = \frac{\left(g(\varphi), 1 \right)}{\left(1, 1 \right)}, \quad a_k R^k = \frac{\left(g(\varphi), \cos k\varphi \right)}{\left(\cos k\varphi, \cos k\varphi \right)}, \quad c_k R^k = \frac{\left(g(\varphi), \sin k\varphi \right)}{\left(\sin k\varphi, \sin k\varphi \right)}.$$

Отсюда находят коэффициенты a, a_k , c_k и записывают искомое решение (4.31).

б. При решении уравнения Лапласа *вне круга* $R < \rho < \infty$ граничные условия первого рода имеют вид

$$\left|u\right|_{\rho=\infty}\left|<\infty, u\right|_{\rho=R}=g\left(\varphi\right).$$

Так как $\ln \rho \to \infty$, $\rho^k \to \infty$ при $\rho \to \infty$, то из условия $\left|u\right|_{\rho=\infty}\left|<\infty\right|$ следует, что в формуле (4.30) нужно положить a=0, $a_k=0$, $c_k=0$. Тогда решение примет вид

$$u(\rho,\varphi) = b + \sum_{k=1}^{\infty} \left[\left(b_k \rho^{-k} \right) \cos k\varphi + \left(d_k \rho^{-k} \right) \sin k\varphi \right]. \tag{4.32}$$

Из граничного условия $u|_{\rho=R}=g(\varphi)$ следует, что

$$g(\varphi) = b + \sum_{k=1}^{\infty} \left[\left(b_k R^{-k} \right) \cos k\varphi + \left(d_k R^{-k} \right) \sin k\varphi \right] \implies$$

$$\Rightarrow b = \frac{\left(g(\varphi), 1 \right)}{\left(1, 1 \right)}, \quad b_k R^{-k} = \frac{\left(g(\varphi), \cos k\varphi \right)}{\left(\cos k\varphi, \cos k\varphi \right)}, \quad d_k R^{-k} = \frac{\left(g(\varphi), \sin k\varphi \right)}{\left(\sin k\varphi, \sin k\varphi \right)}.$$

Отсюда находят коэффициенты a, b_k, d_k и записывают искомое решение (4.28).

Замечания

- 1. Аналогично решаются вторая и третья краевые задачи для уравнения Лапласа в круге, вне круга, в кольце.
- 2. Коэффициенты Фурье иногда удобно находить не по общей формуле через скалярные произведения, а путем сравнения (см. пример 4.10).
- 3. Решение второй краевой задачи для уравнения Лапласа не является единственным, а определяется с точностью до постоянного слагаемого, так как и уравнение Лапласа, и граничное условие содержат только производные, которые не меняются при добавлении к решению постоянного слагаемого.
- 4. Решение краевой задачи для неоднородного уравнения Пуассона $\Delta u = f(M)$ в круговой области следует искать методом вариации, т.е. в виде ряда

$$u(\rho,\varphi) = \sum_{k=0}^{\infty} A_k(\rho) \cos k\varphi + B_k(\rho) \sin k\varphi.$$

Подставляя этот ряд в уравнение Пуассона и в граничные условия, можно найти коэффициенты $A_k(\rho)$, $B_k(\rho)$.

Пример 4.12. Найти функцию, гармоническую внутри круга радиуса R с центром в начале координат такую, что $u \mid_{\rho=R} = \sin^4 \varphi + \cos^4 \varphi$.

Решение. Искомая гармоническая функция удовлетворяет уравнению Лапласа $\Delta u(\rho, \varphi) = 0 \quad (0 < \rho < R)$ и граничным условиям

$$\left| u \right|_{\rho=0} \left| < \infty, \quad u \right|_{\rho=R} = \sin^4 \varphi + \cos^4 \varphi.$$

Общее решение имеет вид (4.31):

$$u(\rho,\varphi) = b + \sum_{k=1}^{\infty} \left[\left(a_k \rho^k \right) \cos k\varphi + \left(c_k \rho^k \right) \sin k\varphi \right].$$

Отсюда при $\rho = R$ получим

$$u|_{\rho=R} = b + \sum_{k=1}^{\infty} \left[\left(a_k R^k \right) \cos k\varphi + \left(c_k R^k \right) \sin k\varphi \right]. \tag{4.33}$$

С другой стороны воспользуемся заданным граничным условием и преобразуем его:

$$u \mid_{\rho=R} = \sin^4 \varphi + \cos^4 \varphi = \left(\sin^2 \varphi + \cos^2 \varphi\right)^2 - 2\sin^2 \varphi \cos^2 \varphi =$$

$$= 1 - \frac{1}{2}\sin^2 2\varphi = 1 - \frac{1}{2} \cdot \frac{1 - \cos 4\varphi}{2} = \frac{3}{4} + \frac{\cos 4\varphi}{4}.$$
(4.34)

Сравнивая соотношения (4.33) и (4.34), получим

$$b + \sum_{k=1}^{\infty} \left[\left(a_k R^k \right) \cos k\varphi + \left(c_k R^k \right) \sin k\varphi \right] = \frac{3}{4} + \frac{\cos 4\varphi}{4}.$$

В последнем равенстве сравним свободные члены и коэффициенты при $\cos k\varphi$, $\sin k\varphi$:

свободные члены:
$$b = \frac{3}{4}$$
, при $\cos 4\varphi$: $a_4 R^4 = \frac{1}{4} \implies a_4 = \frac{1}{4R^4}$, при $\cos k\varphi \ (k \neq 4)$: $a_k R^k = 0 \implies a_k = 0$, при $\sin k\varphi$: $c_k R^k = 0 \implies c_k = 0$.

Тогда искомое решение (4.33) примет вид

$$u\left(\rho,\phi\right) = b + a_4 \, \rho^4 \cos 4\phi = \frac{3}{4} + \frac{\rho^4}{4R^4} \cos 4\phi \; .$$
 Пример 4.13. Решить задачу в круге
$$\begin{cases} \Delta u = \rho \cos 2\phi \; \; (0 < \rho < 1), \\ \left|u\right|_{\rho=0} \left|<\infty, \; u_\rho'\right|_{\rho=1} = 0. \end{cases}$$

Решение. Оператор Лапласа следует записать в полярной системе координат

$$\Delta u = \frac{1}{\rho^2} \left[\underbrace{\left(\rho^2 u_{\rho\rho} + \rho u_{\rho} \right)}_{=\Delta_{\rho} u} + u_{\varphi\varphi} \right] = \frac{1}{\rho^2} \left[\Delta_{\rho} u + u_{\varphi\varphi} \right].$$

Тогда дифференциальное уравнение примет вид

$$\Delta u = \rho \cos 2\varphi \implies \frac{1}{\rho^2} \left[\Delta_\rho u + u_{\varphi\varphi} \right] = \rho \cos 2\varphi \implies \Delta_\rho u + u_{\varphi\varphi} = \rho^3 \cos 2\varphi .$$

Решение краевой задачи для неоднородного уравнения в круговой области следует искать методом вариации, т.е. в виде ряда

$$u(\rho,\varphi) = \sum_{k=0}^{\infty} A_k(\rho) \cdot \cos k\varphi + B_k(\rho) \cdot \sin k\varphi.$$

Подставим этот ряд в уравнение Пуассона:

$$\Delta_{\rho}u + u_{\varphi\varphi} = \rho^3 \cos 2\varphi \implies$$

$$\Rightarrow \sum_{k=0}^{\infty} \left[\Delta_{\rho} A_{k} \left(\rho \right) \cos k \varphi + \Delta_{\rho} B_{k} \left(\rho \right) \sin k \varphi \right] + \sum_{k=0}^{\infty} \left[-k^{2} A_{k} \left(\rho \right) \cos k \varphi - k^{2} B_{k} \left(\rho \right) \sin k \varphi \right] = \rho^{3} \cos 2 \varphi.$$

Сравним в этом равенстве коэффициенты при $\cos k\varphi$, $\sin k\varphi$:

-при
$$\cos k\varphi (k \neq 2)$$
: $\Delta_{\rho} A_k(\rho) - k^2 A_k(\rho) = 0$,

-при
$$\cos \varphi$$
 $(k=2)$: $\Delta_{\rho} A_2(\rho) - 4A_2(\rho) = \rho^3$,

-при
$$\sin k\varphi$$
: $\Delta_{\rho}B_{k}(\rho)-k^{2}B_{k}(\rho)=0$.

Подставим ряд $u(\rho, \varphi) = \sum_{k=0}^{\infty} A_k(\rho) \cos k\varphi + B_k(\rho) \sin k\varphi$ в граничные условия:

$$\left|u\right|_{\rho=0}\left|<\infty\right| \Rightarrow \left|\sum_{k=0}^{\infty} \left[A_{k}\left(0\right)\cos k\varphi + B_{k}\left(0\right)\sin k\varphi\right]\right| < \infty \Rightarrow \left|A_{k}\left(0\right)\right| < \infty, \left|B_{k}\left(0\right)\right| < \infty,$$

$$\left|u_{\rho}'\right|_{\rho=1} = 0 \Rightarrow \left|\sum_{k=0}^{\infty} \left[A_{k}'\left(\rho\right)\cos k\varphi + B_{k}'\left(\rho\right)\sin k\varphi\right]\right|_{\rho=1} = 0 \Rightarrow A_{k}'\left(1\right) = 0, B_{k}'\left(1\right) = 0.$$

Итак, получили следующие три задачи:

$$\begin{cases} \Delta_{\rho}A_{k}\left(\rho\right)-k^{2}A_{k}\left(\rho\right)=0,\\ \left|A_{k}\left(0\right)\right|<\infty,\ A_{k}'\left(1\right)=0 \end{cases} \quad \begin{cases} \Delta_{\rho}A_{2}\left(\rho\right)-4A_{2}\left(\rho\right)=\rho^{3},\\ \left|A_{2}\left(0\right)\right|<\infty,\ A_{2}'\left(1\right)=0, \end{cases} \quad \begin{cases} \Delta_{\rho}B_{k}\left(\rho\right)-k^{2}B_{k}\left(\rho\right)=0,\\ \left|A_{2}\left(0\right)\right|<\infty,\ A_{2}'\left(1\right)=0, \end{cases} \quad \begin{cases} \left|B_{k}\left(0\right)\right|<\infty,\ B_{k}'\left(1\right)=0. \end{cases}$$

Первая и третья задачи одинаковы. Рассмотрим, например, третью задачу

$$\begin{cases} \Delta_{\rho}B_{k}(\rho) - k^{2}B_{k}(\rho) = 0, \\ \left|B_{k}(0)\right| < \infty, B'_{k}(1) = 0, \end{cases} \Rightarrow \begin{cases} \rho^{2}B''_{k}(\rho) + \rho B'_{k}(\rho) - k^{2}B_{k}(\rho) = 0, \\ \left|B_{k}(0)\right| < \infty, B'_{k}(1) = 0. \end{cases}$$

Мы получили однородное уравнение Эйлера. Его решение следует искать в виде $B_k(\rho) = \rho^s$. После подстановки в уравнение получим:

$$\rho^2 s(s-1) \rho^{s-2} + \rho s \rho^{s-1} - k^2 \rho^s = 0 \implies s(s-1) + s - k^2 = 0 \implies s^2 = k^2 \implies s = \pm k.$$

Поэтому общее решение уравнения Эйлера

$$B_k(\rho) = c\rho^k + d\rho^{-k}. \tag{4.35}$$

Из граничного условия $\left|B_k\left(0\right)\right|<\infty$ следует d=0; из граничного условия $B_k'\left(1\right)=0$ следует $B_k'\left(1\right)=c\cdot k\cdot 1^{k-1}=0 \implies c=0$. Поэтому $B_k\left(\rho\right)=0$. Аналогично $A_k\left(\rho\right)=0$ $(k\neq 2)$. Для $A_2\left(\rho\right)$ имеем неоднородное уравнение Эйлера

$$\rho^2 A_2''(\rho) + \rho A_2'(\rho) - 4A_2(\rho) = \rho^3. \tag{4.36}$$

Общее решение соответствующего однородного уравнения имеет вид (4.35) при k=2: $\overline{A}_2(\rho) = c\rho^2 + d\rho^{-2}$.

Частное решение неоднородного уравнения с правой частью ρ^3 ищем в виде $A_2^*(\rho) = a\rho^3$. Подставляя его в уравнение (4.36), получим:

$$6a\rho^{3} + 3a\rho^{3} - 4a\rho^{3} = \rho^{3} \implies a = \frac{1}{5}, A_{2}^{*}(\rho) = \frac{1}{5}\rho^{3},$$
$$A_{2}(\rho) = \overline{A}_{2}(\rho) + A_{2}^{*}(\rho) = c\rho^{2} + d\rho^{-2} + \frac{1}{5}\rho^{3}.$$

Из граничного условия $\left|A_{2}\left(0\right)\right|<\infty$ следует d=0; из граничного условия $A_{2}'\left(1\right)=0$ следует $A_{2}'\left(1\right)=2c+\frac{3}{5}=0 \Rightarrow c=-\frac{3}{10}$. Тогда $A_{2}\left(\rho\right)=\overline{A}_{2}\left(\rho\right)+A_{2}^{*}\left(\rho\right)=-\frac{3}{10}\rho^{2}+\frac{1}{5}\rho^{3}$. Окончательно,

$$u(\rho,\varphi) = \sum_{k=0}^{\infty} A_k(\rho) \cos k\varphi + B_k(\rho) \sin k\varphi = A_2(\rho) \cos 2\varphi = \left(-\frac{3}{10}\rho^2 + \frac{1}{5}\rho^3\right) \cos 2\varphi.$$

5. Метод интегральных преобразований

При решении задачи колебаний или задачи теплопроводности на бесконечном промежутке для $x \in (-\infty, +\infty)$ удобно применять преобразование Фурье по переменной x, переходя от исходной функции u(x,t) к ее Фурье—образу

$$U(w,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x,t) e^{-iwx} dx.$$

При решении задачи колебаний или задачи теплопроводности на полубесконечном промежутке для $x \in (0,+\infty)$ удобно применять преобразование Лапласа по переменной t, переходя от исходной функции u(x,t) к ее изображению (образу).

$$U(x,p) = \int_{0}^{+\infty} u(x,t)e^{-pt}dt.$$

Таблицы простейших свойств этих преобразований приведены в [1], [12]).

Схема применения интегральных преобразований следующая:

- 1) применяем интегральное преобразование по одной из переменных, переходя от функции u к ее образу U;
- 2) записываем задачу для U, причем для функции U получается более простое уравнение (например, обыкновенное дифференциальное уравнение вместо уравнения в частных производных);
- 3) решаем задачу для функции U;
- 4) по функции U восстанавливаем исходную функцию u.

5.1. Колебания бесконечной и полубесконечной струны. Формула Даламбера

1. Рассмотрим задачу

5)
$$\begin{cases} u_{tt} = a^2 u_{xx}, & x \in (-\infty, +\infty), \ t > 0, \\ u|_{t=0} = \varphi(x), & u_t|_{t=0} = \psi(x). \end{cases}$$
 (5.1)

Это — задача о свободных колебаниях *бесконечной* однородной струны с начальным отклонением $\varphi(x)$ точек струны и начальной скоростью $\psi(x)$.

Если применить преобразование Фурье по переменной x к задаче (5.1) по схеме, описанной выше, то получим (см. [1], [12]) формулу Даламбера

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(y) dy.$$

2. В задаче о свободных колебаниях *полубесконечной* однородной струны $x \in (0, +\infty)$ появляется граничная точка x = 0 и граничное условие (ГУ) при x = 0:

$$\begin{cases} u_{tt} = a^{2}u_{xx}, & x \in (0, +\infty), \ t > 0, \\ u|_{t=0} = \varphi(x), & u_{t}|_{t=0} = \psi(x), \\ \Gamma \text{У при } x = 0. \end{cases}$$
 (5.2)

Эту задачу сводят к задаче (5.1), продолжив функции $\varphi(x)$ и $\psi(x)$ на всю числовую ось так, чтобы при x=0 выполнялось граничное условие. Поясним это на примере двух типов граничных условий.

а. Граничное условие имеет вид $u|_{x=0}=0$ (конец закреплен).

Тогда следует продолжить функции $\varphi(x)$, $\psi(x)$ на всю числовую ось **нечетным образом** до функций $\varphi_1(x)$, $\psi_1(x)$ и записать решение по формуле Даламбера:

$$u(x,t) = \frac{\varphi_1(x-at) + \varphi_1(x+at)}{2} + \frac{1}{2a} \int_{x=at}^{x+at} \psi_1(y) dy.$$

б. Граничное условие имеет вид $u_x\big|_{x=0} = 0$ (конец свободен).

Тогда следует продолжить функции $\varphi(x)$, $\psi(x)$ на всю числовую ось **четным образом** до функций $\varphi_1(x)$, $\psi_1(x)$ и записать решение по формуле Даламбера.

3. Теперь рассмотрим задачу *о вынужденных колебаниях* бесконечной однородной струны

$$\begin{cases} u_{tt} = a^{2}u_{xx} + f(x,t), & x \in (-\infty, +\infty), \ t > 0, \\ u|_{t=0} = \varphi(x), & u_{t}|_{t=0} = \psi(x). \end{cases}$$
(5.3)

Решение задачи (5.3) имеет вид

$$u(x,t) = v(x,t) + w(x,t),$$
 $v(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(y) dy,$
 $w(x,t) = \int_{0}^{t} \tilde{w}(x,t-\tau) d\tau, \quad \text{где } \tilde{w}(x,t-\tau) = \frac{1}{2a} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(y,\tau) dy.$

Пример 5.1. Решить задачу

$$\begin{cases} u_{tt} = u_{xx} + x^2, & x \in (-\infty, +\infty), \ t > 0, \\ u\big|_{t=0} = e^{-x}, & u_t\big|_{t=0} = x. \end{cases}$$

Решение. Имеем задачу вида (5.3), где a=1, $f(x,t)=x^2$, $\varphi(x)=e^{-x}$, $\psi(x)=x$. Решение ищем в виде

$$u(x,t) = v(x,t) + w(x,t).$$

Найдем v(x,t) по формуле Даламбера:

$$v(x,t) = \frac{\varphi(x-t) + \varphi(x+t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} \psi(y) dy = \frac{e^{-(x-t)} + e^{-(x-t)}}{2} + \frac{1}{2} \int_{x-t}^{x+t} y \, dy =$$

$$= e^{-x} \cdot \frac{e^t + e^{-t}}{2} + \frac{1}{4a} y^2 \Big|_{x-t}^{x+t} = e^{-x} \operatorname{ch} t + \frac{t}{4}.$$

Найдем $\tilde{w}(x,t-\tau)$:

$$\tilde{w}(x,t-\tau) = \frac{1}{2} \int_{x-(t-\tau)}^{x+(t-\tau)} f(y,\tau) dy = \frac{1}{2} \int_{x-(t-\tau)}^{x+(t-\tau)} y^2 dy = \frac{1}{6} y^3 \Big|_{x-t}^{x+t} =$$

$$= \frac{1}{6} \Big[\Big(x + (t-\tau) \Big)^3 - \Big(x - (t-\tau) \Big)^3 \Big] = x^2 \Big(t - \tau \Big) + \frac{1}{3} (t-\tau)^3.$$

Найдем w(x,t):

$$w(x,t) = \int_{0}^{t} \tilde{w}(x,t-\tau) d\tau = \int_{0}^{t} \left[x^{2}(t-\tau) + \frac{1}{3}(t-\tau)^{3} \right] d\tau = \left[-x^{2} \frac{(t-\tau)^{2}}{2} - \frac{(t-\tau)^{4}}{12} \right]_{\tau=0}^{t=t} = \frac{x^{2}t^{2}}{2} + \frac{t^{4}}{12}.$$

Окончательно,

$$u(x,t) = v(x,t) + w(x,t) = e^{-x} \operatorname{ch} t + \frac{t}{4} + \frac{x^2 t^2}{2} + \frac{t^4}{12}$$

Пример 5.2. Решить задачу

$$\begin{cases} u_{tt} = a^2 u_{xx}, & x \in (0, +\infty), \ t > 0, \\ u \Big|_{t=0} = \frac{x^2}{1+x^2}, & u_t \Big|_{t=0} = \frac{x}{1+x^2}, \\ u \Big|_{x=0} = 0. \end{cases}$$

Решение. Имеем задачу вида (5.2), где $\varphi(x) = \frac{x^2}{1+x^2}$, $\psi(x) = \frac{x}{1+x^2}$. Так как граничное условие имеет вид $u|_{x=0} = 0$, то следует продолжить функции $\varphi(x)$, $\psi(x)$ на всю числовую ось нечетным образом до функций $\varphi_1(x)$, $\psi_1(x)$. Функция $\varphi(x) = \frac{x^2}{1+x^2}$ четная, функция $\psi(x) = \frac{x}{1+x^2}$ нечетная, поэтому их нечетные продолжения имеют вид

$$\varphi_{1}(x) = \begin{cases} \frac{x^{2}}{1+x^{2}}, & x \in (0,+\infty), \\ \frac{-x^{2}}{1+x^{2}}, & x \in (-\infty,0), \end{cases} \qquad \psi_{1}(x) = \frac{x}{1+x^{2}}, & x \in (-\infty,+\infty).$$

По формуле Даламбера:

$$u(x,t) = \frac{\varphi_1(x-at) + \varphi_1(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi_1(y) dy.$$
 (5.4)

Рассмотрим несколько случаев:

a) $x - at > 0 \implies x + at > 0$,

$$u(x,t) = \frac{1}{2} \left[\frac{(x-at)^2}{1+(x-at)^2} + \frac{(x+at)^2}{1+(x+at)^2} \right] + \frac{1}{2a} \int_{x-at}^{x+at} \frac{y}{1+y^2} dy =$$

$$= \frac{1}{2} \left[\frac{(x-at)^2}{1+(x-at)^2} + \frac{(x+at)^2}{1+(x+at)^2} \right] + \frac{1}{4a} \ln \frac{1+(x+at)^2}{1+(x-at)^2};$$

 δ) $x - at < 0 \implies x < at$;

учитывая, что задачу надо решить для x > 0, имеем x + at > 0 и по формуле (5.4)

$$u(x,t) = \frac{1}{2} \left[\frac{-(x-at)^2}{1+(x-at)^2} + \frac{(x+at)^2}{1+(x+at)^2} \right] + \frac{1}{2a} \int_{x-at}^{x+at} \frac{y}{1+y^2} dy =$$

$$= \frac{1}{2} \left[\frac{-(x-at)^2}{1+(x-at)^2} + \frac{(x+at)^2}{1+(x+at)^2} \right] + \frac{1}{4a} \ln \frac{1+(x+at)^2}{1+(x-at)^2}.$$

Пример 5.3. Решить задачу

$$\begin{cases} u_{tt} = a^2 u_{xx}, & x \in (0, +\infty), \ t > 0, \\ u\big|_{t=0} = 0, & u_t\big|_{t=0} = 0, \\ u_x\big|_{x=0} = \delta(t - t_0), \ t_0 > 0. \end{cases}$$

В граничном условии $\delta(t-t_0)$ есть дельта-функция Дирака и это условие означает, что в момент t_0 по концу x=0 струны наносится мгновенный удар.

Решение. Имеем задачу вида (5.2), где $\varphi(x) = 0$, $\psi(x) = 0$. Граничное условие отличается от тех, что рассмотрены в задаче (5.2), поэтому рассмотренные ранее методы здесь не подходят. Применим преобразование Лапласа по переменной t

$$U(x,p) = \int_{0}^{+\infty} u(x,t)e^{-pt}dt,$$

т.е. U(x,p) есть изображение для u(x,t): u(x,t) = U(x,p). Тогда, учитывая, что

$$\begin{aligned} u_{tt}(x,t) &\doteq p^{2}U(x,p) - pu\Big|_{t=0} - u_{t}\Big|_{t=0} = p^{2}U(x,p) \,, \\ u_{xx}(x,t) &\doteq \int_{0}^{+\infty} u_{xx}(x,t)e^{-pt}dt = \left(\int_{0}^{+\infty} u(x,t)e^{-pt}dt\right)\Big|_{xx} = U_{xx}(x,p) \,, \\ \delta(t-t_{0}) &\doteq \int_{0}^{+\infty} \delta(t-t_{0})e^{-pt}dt = e^{-pt_{0}} \,, \end{aligned}$$

получим следующую более простую задачу для изображения:

$$\begin{cases} p^2 U = a^2 U_{xx}, \\ U_x |_{x=0} = e^{-pt_0} \end{cases}$$

Имеем обыкновенное дифференциальное уравнение, линейное, однородное, с коэффициентами, не зависящими от x. Для его решения составим характеристическое уравнение $p^2 = a^2 s^2$, найдем его корни $s = \pm \frac{p}{a}$ и запишем решение

$$U(x,p) = c_1 e^{\frac{-p}{a}x} + c_2 e^{\frac{p}{a}x}.$$

Из ограниченности решения при $x \to +\infty$ следует, что $c_2 = 0$,

$$U(x,p) = c_1 e^{\frac{-p}{a}x}, \quad U_x(x,p) = -c_1 \frac{p}{a} e^{\frac{-p}{a}x}.$$

Тогда из граничного условия

$$U_{x}\big|_{x=0} = e^{-pt_{0}} = -c_{1}\frac{p}{a}e^{0} \implies c_{1} = -\frac{a}{p}e^{-pt_{0}} \implies U(x,p) = c_{1}e^{\frac{-p}{a}x} = -\frac{a}{p}e^{-pt_{0}}e^{\frac{-p}{a}x} = -\frac{a}{p}e^{-p\left(\frac{x}{a}+t_{0}\right)}.$$

Теперь по изображению U(x,p) восстановим оригинал u(x,t). Учитывая, что

$$\frac{1}{p} \doteq \eta(t), \quad \frac{1}{p} e^{-\alpha p} \doteq \eta(t - \alpha),$$

получим решение $u(x,t) = -a \cdot \eta \left(t - t_0 - \frac{x}{a} \right)$, где $\eta(t)$ есть единичная функция Хэвисайда.

5.2. Распространение тепла в бесконечном и полубесконечном стержне. Функция Грина

1. Рассмотрим задачу распространения тепла *в бесконечном стержне* с теплоизолированной боковой поверхностью и *при отсутствии источников тепла*:

$$\begin{cases} u_t = a^2 u_{xx}, & x \in (-\infty, +\infty), \ t > 0, \\ u|_{t=0} = \varphi(x). \end{cases}$$

$$(5.5)$$

Если применить преобразование Фурье по переменной x к задаче (5.5) по схеме, описанной выше, то получим (см. [1], [12]) решение u(x,t) через свертку

$$\varphi(x)*G(x,t)$$
 начальной функции $\varphi(x)$ и функции Грина $G(x,t)=\frac{1}{2a\sqrt{\pi t}}\exp\left(\frac{-x^2}{4a^2t}\right)$:

$$u(x,t) = \varphi(x) * G(x,t) = \int_{-\infty}^{+\infty} \varphi(s)G(x-s,t)ds.$$

2. Рассмотрим задачу распространения тепла *в бесконечном стержне* с теплоизолированной боковой поверхностью и *при наличии источников тепла*:

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), & x \in (-\infty, +\infty), \ t > 0, \\ u|_{t=0} = \varphi(x). \end{cases}$$
 (5.6)

В решении этой задачи к свертке функции $\varphi(x)$ и функции Грина G(x,t) добавляется двойная свертка f(x,t)**G(x,t) функции f(x,t) и функции Грина G(x,t):

$$u(x,t) = \varphi(x) * G(x,t) + f(x,t) * G(x,t) = \int_{-\infty}^{+\infty} \varphi(s)G(x-s,t)ds + \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} f(s,\tau)G(x-s,t-\tau)ds.$$

3. Рассмотрим задачу распространения тепла *в полубесконечном стержне* $x \in (0,+\infty)$; здесь появляется граничная точка x = 0 и граничное условие (ГУ) при x = 0:

$$\begin{cases} u_{t} = a^{2}u_{xx} + f(x,t), & x \in (0,+\infty), \ t > 0, \\ u|_{t=0} = \varphi(x), & \\ \Gamma \text{У при } x = 0. \end{cases}$$
 (5.7)

Как и для бесконечного промежутка $x \in (-\infty, +\infty)$ решение этой задачи можно записать с помощью функции Грина $\tilde{G}(x,t)$:

$$u(x,t) = \varphi(x) * \tilde{G}(x,t) + f(x,t) * *\tilde{G}(x,t) = \int_{0}^{+\infty} \varphi(s) \tilde{G}(x-s,t) ds + \int_{0}^{t} d\tau \int_{0}^{+\infty} f(s,\tau) \tilde{G}(x-s,t-\tau) ds,$$

где функция $\tilde{G}(x,t)$ определяется через функцию Грина $G(x,t) = \frac{1}{2a\sqrt{\pi t}} \exp\left(\frac{-x^2}{4a^2t}\right)$ задачи (5.5) следующим образом:

а) если граничное условие имеет вид $u|_{x=0} = 0$, то

$$\tilde{G}(x-x_0,t) = G(x-x_0,t) - G(x+x_0,t);$$

б) если граничное условие имеет вид $u_x|_{x=0} = 0$, то

$$\tilde{G}(x-x_0,t) = G(x-x_0,t) + G(x+x_0,t);$$

в) если граничное условие имеет вид $u|_{x=0} = g(t)$, то с помощью замены u(x,t) - g(t) = v(x,t) этот случай сводится к случаю а).

Замечания

- 1. Если в задаче (5.6) функция f(x,t) не зависит от x, то удобнее не прибегать к двойной свертке, а искать решение в виде u=v+w, где $v(x,t)=\varphi(x)*G(x,t)$, а w не зависит от x и является решением задачи $\begin{cases} w_t = f(t), \\ w|_{t=0} = 0. \end{cases}$
- 2. Если в задаче (5.6) функции f(x,t), $\varphi(x)$ содержат $\sin \alpha x$ (или $\cos \alpha x$), то удобно u(x,t) искать в виде $u(x,t) = g(t) \sin \alpha x$ (или $u(x,t) = g(t) \cos \alpha x$).
- 3. Иногда при решении задач (5.5), (5.6), (5.7) удобнее не прибегать к сверткам, а непосредственно применить интегральное преобразование Фурье или Лапласа.

Пример 5.4. Решить задачу

$$\begin{cases} u_{t} = a^{2}u_{xx}, & x \in (-\infty, +\infty), \ t > 0, \\ u \Big|_{t=0} = \varphi(x) = \begin{cases} u_{1}, & x < 0, \\ u_{2}, & x > 0. \end{cases}$$

Решение. Имеем задачу типа (5.5). Поэтому решение имеет вид

$$u(x,t) = \varphi(x) * G(x,t) = \int_{-\infty}^{+\infty} \varphi(s) G(x-s,t) ds = \int_{-\infty}^{0} u_1 \cdot \frac{1}{2a\sqrt{\pi t}} e^{\frac{-(x-s)^2}{4a^2t}} ds + \int_{0}^{+\infty} u_2 \cdot \frac{1}{2a\sqrt{\pi t}} e^{\frac{-(x-s)^2}{4a^2t}} ds.$$

Сделаем замену переменной

$$y = \frac{x - s}{2a\sqrt{t}}$$
 \Rightarrow $dy = \frac{-ds}{2a\sqrt{t}}$ \Rightarrow $ds = -2a\sqrt{t} dy$.

Тогда решение примет вид:

$$u(x,t) = -\frac{u_1}{\sqrt{\pi}} \int_{+\infty}^{\frac{x}{2a\sqrt{t}}} e^{-y^2} dy - \frac{u_2}{\sqrt{\pi}} \int_{\frac{x}{2a\sqrt{t}}}^{-\infty} e^{-y^2} dy = \frac{u_1}{\sqrt{\pi}} \left(\int_{\frac{x}{2a\sqrt{t}}}^{0} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2} dy \right) + \frac{u_2}{\sqrt{\pi}} \left(\int_{-\infty}^{0} e^{-y^2} dy + \int_{0}^{\frac{x}{2a\sqrt{t}}} e^{-y^2} dy \right) = \frac{u_1}{\sqrt{\pi}} \left(\int_{-\infty}^{0} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2} dy \right) + \frac{u_2}{\sqrt{\pi}} \left(\int_{-\infty}^{0} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2} dy \right) = \frac{u_1}{\sqrt{\pi}} \left(\int_{-\infty}^{0} e^{-y^2} dy + \int_{0}^{\infty} e^{-y^2}$$

В этом выражении присутствуют известные интегралы

$$\int_{0}^{\infty} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}, \quad \int_{-\infty}^{0} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}, \quad \int_{0}^{\frac{x}{2a\sqrt{t}}} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right),$$

причем значения функции $\Phi(x)$ или $\mathrm{Erf}(x) = 1 - \Phi(x)$, называемой функцией ошибок, имеются в справочниках.

Итак, окончательно решение примет вид:

$$u(x,t) = \frac{u_1}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right) + \frac{\sqrt{\pi}}{2} \right) + \frac{u_2}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} - \frac{\sqrt{\pi}}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right) \right) = \frac{u_1 + u_2}{2} + \frac{u_2 - u_1}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right).$$

Пример 5.5. Решить задачу

$$\begin{cases} u_t = a^2 u_{xx} + \cos t + 2t, & x \in (-\infty, +\infty), \ t > 0, \\ u \Big|_{t=0} = \varphi(x) = \begin{cases} u_1, & x < 0, \\ u_2, & x > 0. \end{cases}$$

Решение. Имеем задачу типа (5.6), где $f(x,t) = \cos t + 2t$. Так как функция f(x,t) не зависит от x, то удобнее, в силу замечания 1 (см. с. 81), искать решение в виде u = v + w, где $v(x,t) = \varphi(x) * G(x,t)$, а w(t) есть решение задачи $\begin{cases} w_t = f(t), \\ w|_{t=0} = 0. \end{cases}$

Свертка $\varphi(x)*G(x,t)$ была найдена в примере 5.4:

$$v(x,t) = \varphi(x) * G(x,t) = \frac{u_1 + u_2}{2} + \frac{u_2 - u_1}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right).$$

Для отыскания функции w(t) решаем задачу $\begin{cases} w_t = \cos t + 2t, \\ w|_{t=0} = 0. \end{cases}$ Отсюда

$$w(t) = \int (\cos t + 2t) dt = \sin t + t^2 + C.$$

Из начального условия найдем C:

$$w\big|_{t=0} = 0 = C \implies C = 0.$$

Тогда $w(t) = \sin t + t^2$ и решение задачи (5.8) имеет вид

$$u = v + w = \frac{u_1 + u_2}{2} + \frac{u_2 - u_1}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right) + \sin t + t^2.$$

Пример 5.6. Решить задачу

$$\begin{cases} u_t = a^2 u_{xx}, & x \in (-\infty, +\infty), \ t > 0, \\ u\Big|_{t=0} = e^{-x^2}. \end{cases}$$

Решение. Имеем задачу типа (5.5), где $\varphi(x) = e^{-x^2}$. Поэтому решение имеет вид

$$u(x,t) = \varphi(x) * G(x,t) = \int_{-\infty}^{+\infty} \varphi(s)G(x-s,t)ds =$$

$$= \int_{-\infty}^{+\infty} e^{-s^2} \cdot \frac{1}{2a\sqrt{\pi t}} e^{\frac{-(x-s)^2}{4a^2t}} ds = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left[-\left(s^2 + \frac{(x-s)^2}{4a^2t}\right)\right] ds.$$

Преобразуем выражение $s^2 + \frac{(x-s)^2}{4a^2t}$, приведя его к общему знаменателю и выделяя в числителе полный квадрат:

$$s^{2} + \frac{(x-s)^{2}}{4a^{2}t} = \frac{s^{2}(4a^{2}t+1) - 2xs + x^{2}}{4a^{2}t} = \frac{\left[s^{2}(4a^{2}t+1) - 2s\sqrt{4a^{2}t+1} + \frac{x^{2}}{\sqrt{4a^{2}t+1}} + \frac{x^{2}}{4a^{2}t+1}\right] - \frac{x^{2}}{4a^{2}t+1} + x^{2}}{4a^{2}t+1} = \left[\frac{s\sqrt{4a^{2}t+1} - \frac{x}{\sqrt{4a^{2}t+1}}}{2at}\right]^{2} + \frac{x^{2}}{4a^{2}t+1}.$$

Сделаем замену переменной

$$y = \frac{s\sqrt{4a^{2}t + 1} - \frac{x}{\sqrt{4a^{2}t + 1}}}{2at} \implies dy = \frac{\sqrt{4a^{2}t + 1}}{2at}ds \implies ds = \frac{2at}{\sqrt{4a^{2}t + 1}}dy.$$

Тогда решение примет вид:

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} e^{\frac{-x^2}{4a^2t+1}} \frac{2a\sqrt{t}}{\sqrt{4a^2t+1}} \int_{-\infty}^{+\infty} e^{-y^2} dy = \frac{1}{\sqrt{4a^2t+1}} e^{\frac{-x^2}{4a^2t+1}}.$$

Пример 5.7. Решить задачу

$$\begin{cases} u_t = a^2 u_{xx} + \sin t, & x \in (-\infty, +\infty), \ t > 0, \\ u\Big|_{t=0} = e^{-x^2}. \end{cases}$$
 (5.8)

Решение. Имеем задачу типа (5.6), где $\varphi(x) = e^{-x^2}$, $f(x,t) = \sin t$. Так как функция f(x,t) не зависит от x, то удобнее, в силу замечания 1, искать решение в виде u = v + w, где $v(x,t) = \varphi(x) * G(x,t)$, а w(t) есть решение задачи $\begin{cases} w_t = f(t), \\ w|_{t=0} = 0. \end{cases}$

Свертка $\varphi(x) * G(x,t)$ была найдена в примере 5.6:

$$v(x,t) = \varphi(x) * G(x,t) = \frac{1}{\sqrt{4a^2t+1}} e^{\frac{-x^2}{4a^2t+1}}.$$

Для отыскания функции w(t) решаем задачу $\begin{cases} w_t = \sin t, \\ w|_{t=0} = 0. \end{cases}$ Отсюда

$$w(t) = \int \sin t \, dt = -\cos t + C.$$

Из начального условия найдем C:

$$w|_{t=0} = 0 = -\cos 0 + C \implies C = \cos 0 = 1.$$

Тогда $w(t) = 1 - \cos t$ и решение задачи (5.8) имеет вид

$$u = v + w = \frac{1}{\sqrt{4a^2t + 1}} e^{\frac{-x^2}{4a^2t + 1}} + 1 - \cos t.$$

Пример 5.8. Решить задачу

ить задачу
$$\begin{cases}
 u_t = u_{xx} + 3t^2 + 9e^{2t}\sin x, & x \in (-\infty, +\infty), \ t > 0, \\
 u|_{t=0} = \sin x.
\end{cases} \tag{5.9}$$

Решение. Имеем задачу типа (5.6), где $\varphi(x) = \sin x$, $f(x,t) = f_1(t) + f_2(x,t)$, $f_1(t) = 3t^2$, $f_2(x,t) = 9e^{2t} \sin x$. Решение будем искать в виде u = v + w, где v, w есть решения следующих задач:

$$\begin{cases} v_t = v_{xx} + 3t^2, & x \in (-\infty, +\infty), \ t > 0, \\ v|_{t=0} = 0, \end{cases} \begin{cases} w_t = w_{xx} + 9e^{2t}\sin x, & x \in (-\infty, +\infty), \ t > 0, \\ w|_{t=0} = \sin x. \end{cases}$$
 В первой задаче функция $f_1(t) = 3t^2$ не зависит от x , поэтому, в силу замечания 1,

В первой задаче функция $f_1(t) = 3t^2$ не зависит от x, поэтому, в силу замечания 1 v = v(t) ищем из условий $\begin{cases} v_t = 3t^2, \\ v|_{t=0} = 0, \end{cases}$ откуда $v = t^3$.

В задаче для w функции $f_2(x,t)$, $\varphi(x)$ содержат $\sin x$, поэтому, в силу замечания 2, удобно w(x,t) искать в виде $w(x,t) = g(t)\sin x$. Подставляя эту функцию в задачу для w, получим:

$$\begin{cases} g'(t)\sin x = -g(t)\sin x + 9e^{2t}\sin x, \\ g(0)\sin x = \sin x, \end{cases} \Rightarrow \begin{cases} g'(t) = -g(t) + 9e^{2t}, \\ g(0) = 1. \end{cases}$$

Найдем сначала решение $\overline{g}(t)$ соответствующего однородного уравнения:

$$\frac{d\,\overline{g}(t)}{d\,t} = -g(t) \implies \frac{d\,\overline{g}(t)}{g(t)} = -d\,t \implies \ln\overline{g}(t) = -t + \ln c = \ln e^{-t} + \ln c \implies \overline{g}(t) = c\,e^{-t}.$$

Частное решение неоднородного уравнения будем искать в виде $\tilde{g}(t) = Ae^{2t}$. Подставляя эту функцию в уравнение, получим:

$$2Ae^{2t} = -Ae^{2t} + 9e^{2t} \implies A = 3 \implies \tilde{g}(t) = 3e^{2t}$$

Тогда общее решение неоднородного уравнения $g(t) = \overline{g}(t) + \tilde{g}(t) = ce^{-t} + 3e^{2t}$.

Из начального условия $g(0) = 1 = c + 3 \implies c = -2$. Следовательно,

$$g(t) = -2e^{-t} + 3e^{2t}, \quad w = g(t)\sin x = (-2e^{-t} + 3e^{2t})\sin x,$$

$$u = v + w = t^3 + (-2e^{-t} + 3e^{2t})\sin x.$$

Пример 5.9. Решить задачу

$$\begin{cases} u_t = a^2 u_{xx}, & x > 0, \ t > 0, \\ u|_{x=0} = u_0, \\ u|_{t=0} = 0. \end{cases}$$
 (5.10)

Решение. Имеем задачу типа (5.7). Так как граничное условие имеет вид $u|_{x=0}=g(t)$, то сначала делаем замену u(x,t)-g(t)=v(x,t). В данном примере $g(t)=u_0$ и поэтому $u(x,t)=v(x,t)+u_0$. Подставим эту функцию в задачу (5.10):

$$\begin{cases} v_t = a^2 v_{xx}, & x > 0, \ t > 0, \\ v\big|_{x=0} = 0, \\ v\big|_{t=0} = -u_0. \end{cases}$$

Так как граничное условие имеет вид $\left.v\right|_{x=0}=0$, то функция Грина такой задачи

$$\tilde{G}(x-s,t) = G(x-s,t) - G(x+s,t) = \frac{1}{2a\sqrt{\pi t}} \exp\left(\frac{-(x-s)^2}{4a^2t}\right) - \frac{1}{2a\sqrt{\pi t}} \exp\left(\frac{-(x+s)^2}{4a^2t}\right),$$

а решение v(x,t) есть свертка функции $\varphi(x) = -u_0$ и функции Грина $\tilde{G}(x,t)$:

$$v(x,t) = \varphi(x) * \tilde{G}(x,t) = \int_{0}^{+\infty} \varphi(s) \tilde{G}(x-s,t) ds = -u_0 \int_{0}^{+\infty} \tilde{G}(x-s,t) ds =$$

$$= \frac{-u_0}{2a\sqrt{\pi t}} \left[\int_{0}^{+\infty} \exp\left(\frac{-(x-s)^2}{4a^2t}\right) ds - \int_{0}^{+\infty} \exp\left(\frac{-(x+s)^2}{4a^2t}\right) ds \right].$$

Как и в примере 5.4, сделаем замену переменной

в первом интеграле
$$y = \frac{x-s}{2a\sqrt{t}}$$
 \Rightarrow $dy = \frac{-ds}{2a\sqrt{t}}$ \Rightarrow $ds = -2a\sqrt{t} dy$,

во втором интеграле
$$y = \frac{x+s}{2a\sqrt{t}}$$
 \Rightarrow $dy = \frac{ds}{2a\sqrt{t}}$ \Rightarrow $ds = 2a\sqrt{t} dy$.

Тогда решение примет вид:

$$v(x,t) = \frac{-u_0}{\sqrt{\pi}} \left(-\int_{\frac{x}{2a\sqrt{t}}}^{-\infty} e^{-y^2} dy - \int_{\frac{x}{2a\sqrt{t}}}^{+\infty} e^{-y^2} dy \right) = \frac{u_0}{\sqrt{\pi}} \left[\left(\int_{\frac{x}{2a\sqrt{t}}}^{0} e^{-y^2} dy + \int_{0}^{-\infty} e^{-y^2} dy + \int_{0}^{+\infty} e^$$

В этом выражении присутствуют известные интегралы:

$$\int_{0}^{+\infty} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}, \qquad \int_{-\infty}^{0} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{2}, \quad \int_{0}^{-\infty} e^{-y^{2}} dy = \frac{-\sqrt{\pi}}{2}, \qquad \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x}{2a\sqrt{t}}} e^{-y^{2}} dy = \varPhi\left(\frac{x}{2a\sqrt{t}}\right),$$

причем значения функции $\Phi(x)$ или $\mathrm{Erf}(x) = 1 - \Phi(x)$, называемой функцией ошибок, имеются в справочниках.

Итак, окончательно решение примет вид:

$$v(x,t) = \frac{u_0}{\sqrt{\pi}} \left[\left(-\frac{\sqrt{\pi}}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right) - \frac{\sqrt{\pi}}{2} \right) + \left(\frac{\sqrt{\pi}}{2} - \frac{\sqrt{\pi}}{2} \Phi\left(\frac{x}{2a\sqrt{t}}\right) \right) \right] = -u_0 \cdot \Phi\left(\frac{x}{2a\sqrt{t}}\right),$$

$$u(x,t) = v(x,t) + u_0 = u_0 - u_0 \cdot \Phi\left(\frac{x}{2a\sqrt{t}}\right) = u_0 \cdot \text{Erf}\left(\frac{x}{2a\sqrt{t}}\right).$$

Для сравнения решим этот же пример 5.9 другим способом, применяя преобразование Лапласа по переменной t. Пусть $u(x,t) \doteq U(x,p)$. Тогда $u_t(x,t) \doteq pU(x,p) - u\big|_{t=0} = pU(x,p), \ u_{xx} \doteq U_{xx}(x,p), \ 1 \doteq \frac{1}{p}$ и задача для функции U примет следующий вид:

$$\begin{cases} pU(x,p) = a^2U_{xx}(x,p), & x > 0, \\ U\Big|_{x=0} = \frac{u_0}{p}. \end{cases}$$

Имеем обыкновенное дифференциальное уравнение, линейное, однородное, с коэффициентами, не зависящими от x. Для его решения составим характеристическое уравнение $p=a^2s^2$, найдем его корни $s=\pm\frac{\sqrt{p}}{a}$ и запишем решение

$$U(x,p) = c_1 e^{\frac{-\sqrt{p}}{a}x} + c_2 e^{\frac{\sqrt{p}}{a}x}.$$

Из ограниченности решения при $x \to +\infty$ следует, что $c_2 = 0$,

$$U(x,p)=c_1e^{\frac{-\sqrt{p}}{a}x}$$
.

Тогда из граничного условия

$$U|_{x=0} = \frac{u_0}{p} = c_1 e^0 \implies c_1 = \frac{u_0}{p} \implies U(x,p) = c_1 e^{\frac{-\sqrt{p}}{a}x} = \frac{u_0}{p} e^{\frac{-\sqrt{p}}{a}x}.$$

Теперь по изображению U(x,p) восстановим оригинал u(x,t). Из таблицы изображений [1, гл. 32, п. 4.3]

$$\frac{1}{p}e^{\frac{-\sqrt{p}}{a}x} \doteq \operatorname{Erf}\left(\frac{x}{2a\sqrt{t}}\right).$$

Поэтому решение $u(x,t) = u_0 \cdot \text{Erf}\left(\frac{x}{2a\sqrt{t}}\right)$.

6. Вариационное исчисление

Вариационные задачи — это задачи исследования функционала F(y) на экстремум (максимум или минимум) на линейном нормированном пространстве Y. Для исследования функционала на экстремум нам понадобятся следующие понятия.

1. *Приращением функционала* F(y) в точке y, соответствующим приращению h аргумента y, называют разность

$$\Delta F(y,h) = F(y+h) - F(y).$$

2. Если приращение функционала $\Delta F(y,h)$ представимо в виде

$$\Delta F(y,h) = L(y,h) + o(||h||),$$

где L(y,h) есть линейный относительно h функционал, то функционал F(y) называют **дифференцируемым** в точке y, а его линейную часть L(y,h) называют **вариацией** функционала F(y) в точке y и обозначают $\delta F(y,h)$.

3). Функционал F(y) достигает в точке y_0 максимума, если

$$F(y_0) \ge F(y)$$
 или $\Delta F(y_0) = F(y) - F(y_0) \le 0$

для всех точек $\,y\,,\,$ близких к точке $\,y_0\,$ по норме пространства $\,Y\,.$

4). Функционал F(y) достигает в точке y_0 **минимума**, если

$$F(y_0) \le F(y)$$
 или $\Delta F(y_0) = F(y) - F(y_0) \ge 0$

для всех точек y , близких к точке y_0 по норме пространства Y .

Общая схема решения задач

Для исследования функционала на экстремум следует:

- 1) найти точку y_0 , на которой вариация $\delta F \big(y_0, h \big) = 0$ для любого элемента $h \in Y$;
- 2) исследовать знак приращения функционала $\Delta F(y_0,h)$.

Мы ограничимся рассмотрением функционалов интегрального вида

$$F(y) = \int_{a}^{b} f(x, y(x), y'(x), ..., y^{(k)}(x)) dx, \quad k \ge 1$$
 (6.1)

Конкретизируем общую схему решения для разных типов функционалов вида (6.1).

6.1. Экстремум функционала
$$F(y) = \int_{a}^{b} f(x, y(x), y'(x)) dx$$

Экстремум такого функционала будем искать среди функций $y(x) \in C^{(1)}[a,b]$ и удовлетворяющих граничным условиям y(a) = A, y(b) = B (задача с закрепленными концами).

Схема решения

Для исследования функционала $F(y) = \int_a^b f(x, y(x), y'(x)) dx$ на экстремум следует:

1) записать уравнение Эйлера

$$f_y' - \frac{d}{dx} (f_{y'}') = 0$$
, (6.2)

- 2) найти его решение $y_0(x)$, удовлетворяющее граничным условиям; такую функцию называют экстремалью, на ней вариация функционала равна нулю;
- 3) исследовать знак приращения функционала $\Delta F(y_0,h)$:

если
$$\Delta F(y_0,h) \le 0$$
, то y_0 — точка максимума функционала; если $\Delta F(y_0,h) \ge 0$, то y_0 — точка минимума функционала.

Частные случаи уравнения Эйлера

- 1. Если функция f(x,y,y') не содержит явно y , то из уравнения Эйлера следует $\boxed{f'_{y'} = const.}$
- 2. Если функция f(x, y, y') не содержит явно x, то из уравнения Эйлера следует

$$f - y' \cdot f'_{y'} = const. \tag{6.3}$$

 $f - y' \cdot f'_{y'} = const.$ **Пример 6.1.** Исследовать на экстремум функционал

$$F(y) = \int_{1}^{2} (y'^{2} + 2yy' + y^{2}) dx$$
, если $y(1) = 1$, $y(2) = 0$.

Решение. Уравнение Эйлера $f'_y - \frac{d}{dx}(f'_{y'}) = 0$ примет вид

$$(2y'+2y)-\frac{d}{dx}(2y'+2y)=0 \implies (2y'+2y)-(2y''+2y')=0 \implies y''-y=0.$$

Получили однородное линейное дифференциальное уравнение (ОЛДУ) с постоянными коэффициентами. Для его решения составим характеристическое уравнение $s^2-1=0$ и найдем его решения $s=\pm 1$. Тогда общее решение ОЛДУ

$$y = c_1 e^x + c_2 e^{-x}$$
.

Из граничных условий найдем коэффициенты c_1, c_2 :

$$y(1) = 1 \implies c_1 e + c_2 e^{-1} = 1, y(2) = 0 \implies c_1 e^2 + c_2 e^{-2} = 0 \implies c_1 = \frac{\Delta_1}{\Delta} = \frac{-e^{-2}}{e - e^{-1}}, \quad c_2 = \frac{\Delta_2}{\Delta} = \frac{e^2}{e - e^{-1}}.$$

Получим экстремаль
$$y = c_1 e^x + c_2 e^{-x} = \frac{-e^{-2} e^x}{e - e^{-1}} + \frac{e^2 e^{-x}}{e - e^{-1}} = -\frac{e^{x-2} - e^{-(x-2)}}{e - e^{-1}} = -\frac{\sinh(x-2)}{\sinh 1}$$
.

Исследуем полученную экстремаль по знаку приращения функционала:

$$\Delta F(y,h) = F(y+h) - F(y) = \int_{1}^{2} \left((y+h)'^{2} + 2(y+h)' (y+h) + (y+h)^{2} \right) dx - \int_{1}^{2} \left(y'^{2} + 2yy' + y^{2} \right) dx =$$

$$= \int_{1}^{2} \left[\left(y'^{2} + 2y'h' + h'^{2} + 2y'y + 2y'h + 2h'y + 2h'h + y^{2} + 2yh + h^{2} \right) - \left(y'^{2} + 2yy' + y^{2} \right) \right] dx =$$

$$= \int_{1}^{2} \left(2y'h' + 2y'h + 2h'y + 2yh \right) dx + \int_{1}^{2} \left(h'^{2} + 2h'h + h^{2} \right) dx.$$

Первый интеграл $\int_{1}^{2} (2y'h' + 2y'h + 2h'y + 2yh)dx$ линеен относительно h, т.е. являет-

ся вариацией функционала и, значит, на экстремали равен нулю. Поэтому $A E(x, h) = \int_{0}^{2} (h'^{2} + 2h'h + h^{2}) dx = \int_{0}^{2} (h'^{2} + h^{2}) dx + \int_{0}^{2} 2hh' dx = \int_{0}^{2} (h'^{2} + h^{2}) dx > 0$

$$\Delta F(y,h) = \int_{1}^{2} (h'^{2} + 2h'h + h^{2}) dx = \int_{1}^{2} (h'^{2} + h^{2}) dx + \int_{1}^{2} 2hh' dx = \int_{1}^{2} (h'^{2} + h^{2}) dx \ge 0.$$

Здесь мы воспользовались тем, что

$$\int_{1}^{2} 2hh' dx = \int_{1}^{2} 2h dh = h^{2}(x) \Big|_{1}^{2} = h^{2}(2) - h^{2}(1) = 0,$$

$$h(2) = y(2) - y_{0}(2) = 0, \quad h(1) = y(1) - y_{0}(1) = 0.$$

Так как $\Delta F(y,h) \ge 0$, то функционал достигает минимума на экстремали.

Пример 6.2. Среди кривых y = y(x), соединяющих точки (x_1, y_1) , (x_2, y_2) , найти ту, которая при вращении вокруг оси *ох* образует поверхность наименьшей площади.

Решение. Площадь поверхности вращения кривой y = y(x) вокруг оси ox вычисляется по формуле

$$S(y) = 2\pi \int_{l} y \, dl = 2\pi \int_{x_{1}}^{x_{2}} y \sqrt{1 + y'^{2}} \, dx$$
.

Этот функционал нужно исследовать на минимум при условии, что

$$y(x_1) = y_1, \ y(x_2) = y_2.$$

Так как подынтегральная функция $f = y\sqrt{1+{y'}^2}$ не содержит явно x, то из уравнения Эйлера, в силу замечания 2 (см. с. 88), следует

$$f - y' \cdot f'_{y'} = c \implies y \sqrt{1 + {y'}^2} - y' \frac{y y'}{\sqrt{1 + {y'}^2}} = c \implies y \left(1 + {y'}^2\right) - y y'^2 = c \sqrt{1 + {y'}^2} \implies y = c \sqrt{1 + {y'}^2}.$$

Последнее уравнение возведем в квадрат, выразим y' и разделим переменные:

$$\frac{dy}{dx} = y' = \frac{\sqrt{y^2 - c^2}}{c} \implies \frac{c \, dy}{\sqrt{y^2 - c^2}} = dx \implies \int \frac{c \, dy}{\sqrt{y^2 - c^2}} = \int dx \, .$$

Интеграл $\int \frac{c\,dy}{\sqrt{y^2-c^2}}$ является табличным (так называемый «длинный лога-

рифм»), но удобнее сделать в нем замену:

$$\int \frac{c \, dy}{\sqrt{y^2 - c^2}} = \begin{vmatrix} y = c \cdot \operatorname{ch} t \\ dy = c \cdot \operatorname{sh} t \, dt \end{vmatrix} = \int \frac{c^2 \cdot \operatorname{sh} t \, dt}{c \cdot \operatorname{sh} t} = c \cdot t.$$

Итак, получим $ct = x + c_1$ или $t = \frac{x + c_1}{c}$. Тогда $y = c \cdot \operatorname{ch} t = c \cdot \operatorname{ch} \frac{x + c_1}{c}$. Полученная экстремаль является цепной линией. Константы c, c_1 находятся из условия закрепленности концов $y(x_1) = y_1, \ y(x_2) = y_2$.

6.2. Экстремум функционала
$$F(y_1,...,y_n) = \int_a^b f(x,y_1,...,y_n,y_1',...,y_n') dx$$

Экстремум такого функционала будем искать среди дифференцируемых функций $y_1(x),...,y_n(x)$, удовлетворяющих граничным условиям $y_k(a) = A_k$, $y_k(b) = B_k$ (k = 1,2,...,n).

Схема решения

Для исследования функционала $F(y_1,...,y_n) = \int_a^b f(x,y_1,...,y_n,y_1',...,y_n')dx$ на экс-

тремум следует:

1) записать систему уравнений Эйлера

$$\frac{\partial f}{\partial y_k} - \frac{d}{dx} \left(\frac{\partial f}{\partial y_k'} \right) = 0 \qquad (k = 1, 2, ..., n)$$
(6.4)

- 2) найти решения системы, удовлетворяющие граничным условиям, т.е экстремали (на них вариация функционала равна нулю);
- 3) исследовать знак приращения функционала ΔF .

Пример 6.3. Исследовать на экстремум функционал

$$F(y,z) = \int_{0}^{1} (2y \cosh x + z^{2} + y'^{2} + z'^{2}) dx, \text{ если } y(0) = 0, y(1) = \cosh 1, z(0) = 0, z(1) = 4 \sinh 1.$$

Решение. Здесь $f = 2y \cosh x + z^2 + y'^2 + z'^2$. Запишем систему уравнений Эйлера (6.4) и решим ее:

$$\begin{cases} f'_{y} - \frac{d}{dx} (f'_{y'}) = 0, \\ f'_{z} - \frac{d}{dx} (f'_{z'}) = 0, \end{cases} \Rightarrow \begin{cases} 2 \operatorname{ch} x - 2y'' = 0, \\ 2z - 2z'' = 0, \end{cases} \Rightarrow \begin{cases} y'' = \operatorname{ch} x, \\ z'' - z = 0, \end{cases} \Rightarrow \begin{cases} y = \operatorname{ch} x + c_{1}x + c_{2}, \\ z = d_{1}e^{x} + d_{2}e^{-x}. \end{cases}$$

Из граничных условий найдем коэффициенты c_1, c_2, d_1, d_2 :

$$y(0) = 1 + c_2 = 0$$
 \Rightarrow $c_2 = -1$, $y(1) = \cosh 1 + c_1 + 1 = \cosh 1$ \Rightarrow $c_1 = -1$ \Rightarrow $y = \cosh x - x - 1$, $z(0) = d_1 + d_2 = 0$ \Rightarrow $d_2 = -d_1$, $z(1) = d_1 e - d_1 e^{-1} = d_1 2 \sinh 1 = 4 \sinh 1$ \Rightarrow $d_1 = 2$, $d_2 = -2$ \Rightarrow $z = 4 \sinh x$.

Исследуем знак приращения функционала, придавая y(x) и z(x) соответственно приращения $h_1(x)$ и $h_2(x)$:

$$\Delta F(y,z,h_1,h_2) = F(y+h_1,z+h_2) - F(y,z) =$$

$$= \int_0^1 \left(2(y+h_1) \cosh x + (z+h_2)^2 + (y+h_1)'^2 + (z+h_2)'^2 \right) dx - \int_0^1 \left(2y \cosh x + z^2 + y'^2 + z'^2 \right) dx =$$

$$= \int_0^1 \left(2h_1 \cosh x + 2zh_2 + 2y'h_1' + 2z'h_2' \right) dx + \int_0^1 \left(h_2^2 + h_1'^2 + h_2'^2 \right) dx.$$

Первый интеграл $\int_0^1 \left(2h_1 \cosh x + 2zh_2 + +2y'h'_1 + 2z'h'_2\right) dx$ линеен относительно h_1, h_2 , т.е. является вариацией функционала и, значит, на экстремали равен нулю. Поэтому

$$\Delta F(y,z,h_1,h_2) = \int_{0}^{1} (h_2^2 + h_1'^2 + h_2'^2) dx > 0.$$

Следовательно, функционал достигает минимума на экстремали $y = \operatorname{ch} x - x - 1, \ z = 4 \operatorname{sh} x$.

6.3. Экстремум функционала
$$F(y) = \int_{a}^{b} f(x, y(x), y'(x), ..., y^{(n)}(x)) dx$$

Экстремум такого функционала будем искать среди функций $y(x) \in C^{(n)}[a,b]$, удовлетворяющих граничным условиям $y^{(k)}(a) = A_k$, $y^{(k)}(b) = B_k$ (k = 0,1,...,n-1).

Схема решения

Для исследования функционала $F(y) = \int_{a}^{b} f(x, y(x), y'(x), ..., y^{(n)}(x)) dx$ на экстремум:

1) записать уравнение Эйлера-Пуассона

$$\left| f_{y}' - \frac{d}{dx} (f_{y'}') + \frac{d^{2}}{dx^{2}} (f_{y''}') - \dots + (-1)^{n} \frac{d^{n}}{dx^{n}} (f_{y^{(n)}}') = 0 \right|; \tag{6.5}$$

2) найти его решение, удовлетворяющее граничным условиям (экстремаль), на нем вариация функционала равна нулю;

3) исследовать знак приращения функционала ΔF .

Пример 6.4. Исследовать на экстремум функционал

$$F(y) = \int_{0}^{1} (yy' + y'^{2} + y'y'' + y''^{2}) dx,$$

если y(0) = 0, y(1) = 1, y'(0) = 0, y'(1) = 1.

Решение. Здесь $f(y,y',y'') = yy' + y'^2 + y'y'' + y''^2$. Запишем уравнение Эйлера-Пуассона:

$$f'_{y} - \frac{d}{dx} (f'_{y'}) + \frac{d^{2}}{dx^{2}} (f'_{y''}) = 0 \implies y' - \frac{d}{dx} (y + 2y' + y'') + \frac{d^{2}}{dx^{2}} (y' + 2y'') = 0 \implies y' - (y' + 2y'' + y''') + (y''' + 2y^{(4)}) = 0 \implies y^{(4)} - y'' = 0.$$

Получили ОЛДУ с постоянными коэффициентами. Для его решения составим характеристическое уравнение $s^4 - s^2 = s^2 \left(s^2 - 1 \right) = 0$ и найдем его решения $s_{1,2} = 0$, $s_{3,4} = \pm 1$. Тогда общее решение ОЛДУ

$$y = c_1 e^x + c_2 e^{-x} + c_3 x + c_4$$
.

Из граничных условий найдем коэффициенты c_1, c_2, c_3, c_4 :

$$y(0) = 0, \Rightarrow c_4 = 0, y'(0) = 0, \Rightarrow c_3 = 0, \Rightarrow y = c_1 \frac{x^3}{6} + c_2 \frac{x^2}{2}, \begin{cases} y(1) = 1, \\ y'(1) = 1, \end{cases} \Rightarrow \begin{cases} c_1/6 + c_2/2 = 1, \\ c_1/2 + c_2 = 1, \end{cases} \Rightarrow \begin{cases} c_1 - 6, \\ c_2 = 4, \end{cases} \Rightarrow y = -x^3 + 2x^2.$$

Исследуем знак приращения функционала, придавая y(x) приращение h(x):

$$\Delta F(y,h) = F(y+h) - F(y) =$$

$$= \int_{0}^{1} ((y+h)(y'+h') + (y'+h')^{2} + (y'+h')(y''+h'') + (y''+h'')^{2}) dx - \int_{0}^{1} (yy' + y'^{2} + y'y'' + y''^{2}) dx =$$

$$= \int_{0}^{1} (yh' + y'h + 2y'h' + y'h'' + y''h'' + 2y''h'') dx + \int_{0}^{1} (hh' + h'^{2} + h'h'' + h''^{2}) dx.$$

В первый интеграл $\int_0^1 (yh' + y'h + 2y'h' + y'h'' + y''h'' + 2y''h'') dx$ собраны слагаемые ли-

нейные относительно h, т.е. этот интеграл является вариацией функционала и, значит, на экстремали равен нулю. Поэтому

$$\Delta F(y,h) = \int_{0}^{1} (h h' + h'^{2} + h' h'' + h''^{2}) dx = \int_{0}^{1} (h'^{2} + h''^{2}) dx \ge 0.$$

Здесь мы воспользовались тем, что

$$\int_{0}^{1} hh' dx = \int_{0}^{1} h dh = \frac{1}{2} h^{2}(x) \Big|_{0}^{1} = \frac{1}{2} \Big[h^{2}(1) - h^{2}(0) \Big] = 0,$$

$$\int_{0}^{1} h'h'' dx = \int_{0}^{1} h' dh' = \frac{1}{2} h'^{2}(x) \Big|_{0}^{1} = \frac{1}{2} \Big[h'^{2}(1) - h'^{2}(0) \Big] = 0,$$

так как $h(1) = y(1) - y_0(1) = 0$, $h'(1) = y'(1) - y_0'(1) = 0$; аналогично h(0) = h'(0) = 0. Так как $\Delta F(y,h) \ge 0$, то функционал достигает минимума на экстремали.

6.4. Условный экстремум

Рассмотрим вариационную задачу на экстремум функционала $F(y) = \int_a^b f(x,y_1,...,y_n,y_1',...,y_n')dx$ среди функций $y_1(x),...,y_n(x) \in C^{(1)}[a,b]$, удовлетворяющих граничным условиям $y_k(a) = A_k$, $y_k(b) = B_k$ (k = 1,2,...,n). Предполагая дополнительно, что функции $y_1(x),...,y_n(x)$ удовлетворяют k условиям (уравнениям связи), получим задачу на условный экстремум функционала. Рассмотрим уравнения связи трех видов:

- 1) связи конечные $\varphi_s(x, y_1, ..., y_n) = 0$ (s = 1, 2, ..., k), k < n;
- 2) связи дифференциальные $\varphi_s(x, y_1, ..., y_n, y_1', ..., y_n') = 0$ (s = 1, 2, ..., k), k < n;
- 3) связи интегральные $\int_{a}^{b} \varphi_{s}(x, y_{1}, ..., y_{n}, y'_{1}, ..., y'_{n}) dx = c_{s}$ (s = 1, 2, ..., k), k < n.

Схема решения

Для исследования функционала $F(y) = \int_a^b f(x, y_1, ..., y_n, y_1', ..., y_n') dx$ на экстремум при наличии k уравнений связи (конечных или дифференциальных или интегральных) следует:

1) записать вспомогательный функционал Лагранжа

$$\Phi(y) = \int_{a}^{b} \left[f(x, y_1, ..., y_n, y'_1, ..., y'_n) + \sum_{s=1}^{k} \lambda_s \varphi_s \right] dx,$$

где λ_s – множители Лагранжа (они являются константами в случае интегральных связей и функциями от x в случае конечных и дифференциальных связей);

- 2) записать систему уравнений Эйлера (6.4) для функционала Лагранжа;
- 3) найти решения этой системы, удовлетворяющие граничным условиям и уравнениям связи;
- 4) исследовать полученные решения из смысла задачи или знака приращения функционала $\Delta \Phi$.

Пример 6.5. Найти геодезическую линию (линию минимальной длины) цилиндра $x^2 + y^2 = 4$, соединяющую точки A(0,2,0) и $B(1,\sqrt{3},\pi)$.

Решение. Будем искать уравнение геодезической линии, соединяющей точки A и B, в параметрическом виде x = x, y = y(x), z = z(x). Длина такой линии вычисляется по формуле

$$L = \int_{x_{x}}^{x_{2}} \sqrt{x_{x}'^{2} + y_{x}'^{2} + z_{x}'^{2}} dx = \int_{0}^{1} \sqrt{1 + y_{x}'^{2} + z_{x}'^{2}} dx.$$

Линия проходит через точки A и B, поэтому получаем граничные условия $y(0)=2,\ z(0)=0,\ y(1)=\sqrt{3},\ z(1)=\pi$.

Линия лежит на цилиндре, поэтому имеет место уравнение связи

$$x^2 + y^2(x) = 4$$
.

Итак, получили задачу на условный экстремум функционала L = L(y,z) при наличии конечной связи. Для ее решения запишем вспомогательный функционал Лагранжа

$$\Phi = \int_{0}^{1} \left[\sqrt{1 + {y'_{x}}^{2} + {z'_{x}}^{2}} + \lambda(x)(x^{2} + y^{2} - 4) \right] dx.$$

Для этого функционала $f = \sqrt{1 + {y_x'}^2 + {z_x'}^2} + \lambda(x) \left(x^2 + y^2 - 4\right)$ и система уравнений Эй-лера имеет вид

$$\begin{cases} f'_{y} - \frac{d}{dx} (f'_{y'}) = 0, \\ f'_{z} - \frac{d}{dx} (f'_{z'}) = 0, \end{cases} \Rightarrow \begin{cases} 2\lambda y - \frac{d}{dx} \left(\frac{y'_{x}}{\sqrt{1 + {y'_{x}}^{2} + {z'_{x}}^{2}}} \right), \\ -\frac{d}{dx} \left(\frac{z'_{x}}{\sqrt{1 + {y'_{x}}^{2} + {z'_{x}}^{2}}} \right) = 0. \end{cases}$$

Из второго уравнения получим

$$\frac{z'_x}{\sqrt{1+{y'_x}^2+{z'_x}^2}} = \frac{1}{c} \implies (cz'_x)^2 = 1+{y'_x}^2+{z'_x}^2 \implies {z'_x}^2 = (1+{y'_x}^2)\cdot\frac{1}{c^2-1}.$$

Обозначим константу $\frac{1}{c^2-1}$ через c_1^2 и выразим из уравнения связи y , y_x' , $1+{y_x'}^2$:

$$y = \pm \sqrt{4 - x^2}$$
, $y'_x = \pm \frac{x}{\sqrt{4 - x^2}}$, $1 + y'_x^2 = 1 + \frac{x^2}{4 - x^2} = \frac{4}{4 - x^2}$.

Подставляя эти величины в выражение для $z_x'^2 = (1 + y_x'^2) \cdot \frac{1}{c^2 - 1}$, получим

$$z_x'^2 = \frac{4}{4 - x^2} c_1^2 \implies z_x' = \frac{2c_1}{\sqrt{4 - x^2}} \implies z = \int \frac{2c_1}{\sqrt{4 - x^2}} dx = 2c_1 \arcsin \frac{x}{2} + c_2.$$

Из граничных условий имеем:

$$\begin{cases} z(0) = 0 = c_2, \\ z(1) = \pi = 2c_1 \arcsin \frac{1}{2} = 2c_1 \frac{\pi}{6}, \end{cases} \Rightarrow \begin{cases} c_2 = 0, \\ c_1 = 3, \end{cases} \Rightarrow \begin{cases} z = 6 \arcsin \frac{x}{2}, \\ x^2 + y^2 = 4. \end{cases}$$

Параметризуя окружность стандартным образом, получим уравнение геодезической линии в виде

$$\begin{cases} x = 2\sin t, \\ y = 2\cos t, \\ z = 6t. \end{cases}$$

Это есть уравнение винтовой линии, лежащей на цилиндре $x^2 + y^2 = 4$.

Пример 6.6. Найти экстремали функционала

$$F(y,z) = \int_{0}^{\pi/2} (2yz + y'^{2} + z'^{2}) dx,$$

если
$$y' + z' = 4x$$
, $y(0) = -1$, $z(0) = 1$, $y(\pi/2) = \frac{\pi^2}{4} - 1$, $z(\pi/2) = \frac{\pi^2}{4} + 1$.

Решение. Имеем задачу на условный экстремум функционала при наличии дифференциальной связи y' + z' = 4x. Для решения задачи запишем вспомогательный функционал Лагранжа

$$\Phi = \int_{0}^{\pi/2} \left[\left(2yz + y'^2 + z'^2 \right) + \lambda(x) (y' + z' - 4x) \right] dx.$$

Для этого функционала $f = (2yz + {y'}^2 + {z'}^2) + \lambda(x)(y' + z' - 4x)$ и система уравнений Эйлера имеет вид

$$\begin{cases} f'_{y} - \frac{d}{dx} (f'_{y'}) = 0, \\ f'_{z} - \frac{d}{dx} (f'_{z'}) = 0, \end{cases} \Rightarrow \begin{cases} 2z - 2y'' - \lambda'(x) = 0, \\ 2y - 2z'' - \lambda'(x) = 0. \end{cases}$$

Вычитая в последней системе из первого уравнения второе уравнение, получим

$$(z-y)+(z-y)''=0.$$

Для решения этого ОЛДУ с постоянными коэффициентами составим характеристическое уравнение $s^2+1=0$. Его корни $s=\pm i$. Поэтому общее решение ОЛДУ имеет вид

$$z - y = c_1 \cos x + c_2 \sin x.$$

Интегрируя уравнение связи y' + z' = 4x, получим

$$z + y = 2x^2 + c_3.$$

Воспользуемся граничными условиями:

$$\begin{cases} z(0) - y(0) = 2 = c_1, & c_1 = 2, \\ z(0) + y(0) = 0 = c_3, & \Rightarrow c_3 = 0, \\ z(\pi/2) - y(\pi/2) = 2 = c_2, & c_2 = 2, \end{cases} \Rightarrow \begin{cases} z - y = 2\cos x + 2\sin x, \\ z + y = 2x^2. \end{cases}$$

Складывая и вычитая два равенства последней системы, получим экстремали

$$\begin{cases} y = x^2 - \cos x - \sin x, \\ z = x^2 + \cos x + \sin x. \end{cases}$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Арсенин В.Я. Методы математической физики и специальные функции / В.Я. Арсенин. М.: Наука, 1994. 383 с.
- 2. Бронштейн И. Н. Справочник по математике для инженеров и учащихся втузов / И.Н. Бронштейн, К.А. Семендяев.М.: Наука, 1980. 946 с.
- 3. Голоскопов Д.П. Уравнения математической физики. Решение задач в системе Maple / Д.П. Голоскопов. СПб., 2004. 539 с.
- 4. Корн Г. Справочник по математике для научных работников и инженеров / Г. Корн, Т. Корн. М.: Наука, 1977. 831 с.
- 5. Краснов М.Л. Вся высшая математика / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Едиториал УРСС, 2005. Т.4. 352 с.
- 6. Краснов М.Л. Вариационное исчисление. Задачи и примеры с подробными решениями / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Едиториал УРСС, 2002. 176 с.
- 7. Минькова Р.М. Методы математической физики: в 2 ч. / Р.М. Минькова, Екатеринбург: УГТУ-УПИ, 2008. Ч.1. 85 с.
- 8. Леликова Е.Ф. Методы математической физики: в 2 ч. / Е.Ф. Леликова, Екатеринбург: УГТУ-УПИ, 2008. Ч.2. 69 с.
- 9. Минькова Р.М. Математическая физика: сб. типовых расчетов / Р.М. Минькова, В. В. Трещева. Екатеринбург: УГТУ-УПИ, 2007. 56 с.
- 10.Очан Ю.С. Сборник задач по методам математической физики / Ю.С. Очан. М.: Наука, 1984. 195 с.
- 11.Пикулин В.П. Практический курс по уравнениям математической физики / В.П. Пикулин, С.И. Похожаев. М.: Изд-во МИНМО, 2004. 208 с.
- 12. Сборник задач по математике для втузов. В 4 ч. Ч.4 / под ред. А.В. Ефимова, Б.П. Демидовича. М.: Наука, 2000. 464 с.
- 13. Соболев С.А. Уравнения математической физики /С.А. Соболев. М.: Наука, 1992. 443 с.
- 14. Тихонов А.Н. Уравнения математической физики /А.Н. Тихонов, А.А. Самарский. М.:Наука, 2004. 798 с.
- 15. Шарма Дж.Н. Уравнения в частных производных для инженеров / Дж.Н. Шарма, К. Сингх. М.: Техносфера, 2002. 318 с.
- 16. Янке Е. Специальные функции. Формулы, графики, таблицы / Е. Янке, Ф. Эмде, Ф. Леш. М.: Наука, 1977. 343 с.

ПРИЛОЖЕНИЕ 1

Таблица П.1.1

Свойства многочленов	Многочлены Лежандра	Многочлены Чебышева
Обозначение	$P_n(x), x \in (-1;1)$	$T_n(x), x \in (-1;1)$
Вес ортогональности	$\rho = 1$	$\rho = \frac{1}{\sqrt{1 - x^2}}$
Оператор, для которого много- член является собственной функцией	$Lu = ((1-x^2)u')' = (1-x^2)u'' - 2xu'$	$Lu = \sqrt{1 - x^2} \left(\sqrt{1 - x^2} u' \right)' = \left(1 - x^2 \right) u'' - x u'$
Соответствующие собственные значения	$\lambda_n = -n(n+1)$	$\lambda_n = -n^2$
Формула Родрига	$P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left(x^2 - 1\right)^n$	$T_n(x) = \frac{(-2)^n n!}{(2n)!} \sqrt{1 - x^2} \frac{d^n}{dx^n} (1 - x^2)^{n - \frac{1}{2}}$
Производящая функция	$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, t < 1$	$\frac{1 - xt}{1 - 2xt + t^2} = \sum_{n=0}^{\infty} T_n(x)t^n, t < 1$
Квадрат нормы	$\left\ P_n(x)\right\ ^2 = \frac{2}{2n+1}$	$ T_n(x) ^2 = \frac{\pi}{2} (n \neq 0), T_0(x) ^2 = \pi$
Рекуррентные соотношения	$P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x),$ $(2n+1) P_n(x) = P_{n+1}(x) - P_{n-1}(x)$	$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x),$ $2T_n(x) = T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x)$
Первые многочлены	$P_0(x) = 1$ $P_1(x) = x$ $P_2(x) = \frac{1}{2}(3x^2 - 1)$	$T_0(x) = 1$ $T_1(x) = x$ $T_2(x) = 2x^2 - 1$
Значения много- членов в некото- рых точках	$P_n(1) = 1, P_n(-1) = (-1)^n,$ $P_{2n+1}(0) = 0,$ $P_{2n}(0) = (-1)^n \frac{(2n-1)!!}{(2n)!!}$	$T_n(1) = 1$, $T_n(-1) = (-1)^n$, $T_{2n+1}(0) = 0$, $T_{2n}(0) = (-1)^n$

Таблица П.1.2

Свойства многочленов	Многочлены Эрмита	Многочлены Лагерра
Обозначение	$H_n(x), x \in (-\infty; +\infty)$	$L_n^{\alpha}(x); L_n^0(x) = L_n(x), x \in (0,\infty)$
Вес ортогональности	$\rho = e^{-x^2}$	$\rho = e^{-x}x^{\alpha}$
Оператор, для которого многочлен является собственной функцией	$Lu = e^{x^2} \left(e^{-x^2} u' \right)' = u'' - 2xu'$	$Lu = xu'' + (1 - x + \alpha)u'$
Соответствующие собственные значения	$\lambda_n = -2 n$	$\lambda_n = -n$
Формула Родрига	$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right)$	$L_n^{\alpha}(x) = \frac{1}{n!} x^{-\alpha} e^x \frac{d^n}{dx^n} \left(x^{n+\alpha} e^{-x} \right)$
Производящая функция	$e^{-t^2+2tx} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$	$\frac{e^{tx/(t-1)}}{\left(1-t\right)^{\alpha+1}} = \sum_{n=0}^{\infty} L_n^{\alpha}(x)t^n$
Квадрат нормы	$\ H_n(x)\ ^2 = 2^n n! \sqrt{\pi}$	$\left\ L_n^{\alpha}(x)\right\ ^2 = \frac{\Gamma(n+\alpha+1)}{n!}$
Рекуррентные соотношения	$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x),$ $2nH_{n-1}(x) = H'_n(x)$	$(n+1) L_{n+1}^{\alpha}(x) =$ $= (2n+1+\alpha-x) L_n^{\alpha}(x) - (n+\alpha) L_{n-1}^{\alpha}(x),$ $(L_n^{\alpha}(x))' = -L_{n-1}^{\alpha+1}(x) (n>1)$
Первые многочлены	$H_0(x) = 1, H_1(x) = 2x,$ $H_2(x) = 4x^2 - 2$	$L_0^{\alpha}(x) = 1, L_1^{\alpha}(x) = 1 + \alpha - x,$ $L_2^{\alpha}(x) = \frac{x^2}{2} - x(2 + \alpha) + \frac{(2 + \alpha)(1 + \alpha)}{2}$
Значения в некоторых точках	$H_{2n+1}(0) = 0,$ $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$	$L_n(0)=1$

Таблица П.1.3

Свойства функций	Функции Лежандра	Функции Эрмита
Обозначение	$P_n^k(x), x \in (-1;1)$	$\psi_n(x), x \in (-\infty, +\infty)$
Вес ортогональности	ρ = 1	$\rho = 1$
Квадрат нормы	$\left\ P_n^k(x)\right\ ^2 = \frac{2}{2n+1} \cdot \frac{(n+k)!}{(n-k)!}$	$\left\ \psi_n(x)\right\ ^2=1$
Оператор, для которого функция является собственной функцией	$Lu = (1 - x^2)u'' - 2xu' - \frac{k^2u}{1 - x^2}$	$Lu = u'' + \left(1 - x^2\right)u$
Соответствующие собственные значения	$\lambda_n = -n(n+1)$	$\lambda_n = -2 n$
Рекуррентные соотношения	$ (2n+1)xP_n^k(x) - (n-k+1)P_{n+1}^k(x) - (k+n)P_{n-1}^k(x) = 0 $	$\sqrt{n+1} \Psi_{n+1}(x) =$ $= \sqrt{2} x \Psi_n(x) - \sqrt{n} \Psi_{n-1}(x)$
Явное выражение	$P_n^k(x) = \left(1 - x^2\right)^{k/2} \frac{d^k}{dx^k} P_n(x)$	$\Psi_n(x) = e^{-x^2/2} \frac{H_n(x)}{\ H_n\ }$
Частные случаи	$P_n^0(x) = P_n(x), P_n^k(x) \equiv 0 (k > n),$ $P_1^1(x) = \sqrt{1 - x^2}, P_2^1(x) = 3x\sqrt{1 - x^2},$ $P_2^2(x) = 3(1 - x^2)$	$\Psi_0(x) = e^{-x^2/2} \pi^{-1/4},$ $\Psi_1(x) = \sqrt{2} x e^{-x^2/2} \pi^{-1/4}$

Таблица П.1.4

Свойства функ- ций	Функции Бесселя	Модифицированные функции Бесселя	
Обозначение	$J_p(\mu x), x \in (0;l)$	$I_p(\mu x) = \frac{1}{i^p} J_p(i\mu x), x \in (0;l)$	
Вес ортогональ-	$\rho = x$	$\rho = x$	
Квадрат нормы			
Оператор, для которого функции являются собственными	$Lu = u'' + \frac{1}{x}u' - \frac{p^2}{x^2}u$	$Lu = u'' + \frac{1}{x}u' - \frac{p^2}{x^2}u$	
Соответствую- щие собствен- ные значения	$\lambda = -\mu^2$	$\lambda = +\mu^2$	
Рекуррентные соотношения	$(x^{p}J_{p}(x))' = x^{p}J_{p-1}(x),$ $(x^{-p}J_{p}(x))' = -x^{-p}J_{p+1}(x),$ $\frac{2p}{x}J_{p}(x) = J_{p-1}(x) + J_{p+1}(x),$ $2J_{p}'(x) = J_{p-1}(x) - J_{p+1}(x)$	$(x^{p}I_{p}(x))' = x^{p}I_{p-1}(x),$ $(x^{-p}I_{p}(x))' = x^{-p}I_{p+1}(x),$ $\frac{2p}{x}I_{p}(x) = I_{p-1}(x) - I_{p+1}(x),$ $2I_{p}'(x) = I_{p-1}(x) + I_{p+1}(x)$	
Явное выражение	$J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n+p}}{n! \Gamma(p+n+1)}$	$I_p(x) = \sum_{n=0}^{\infty} \frac{(x/2)^{2n+p}}{n! \Gamma(p+n+1)}$	
Частные случаи	$J_{-n}(x) = (-1)^n J_n(x)$ $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	$I_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{sh} x$ $I_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{ch} x$	

Таблица П.1.5 Корни уравнения $J_0(\mu)$ = 0 и соответствующие значения функции $J_1(\mu)$

	n	1	2	3	4	5	6
	μ_n	2,4048	5,5201	8,6537	11,7915	14,9309	18,0711
Ĵ	$J_1(\mu_n)$	0,5191	-0,3403	0,2715	-0,2325	0,2065	0,1877

Таблица П.1.6 **Корни уравнения** $\alpha \cdot J_0(\mu) - \mu \cdot J_1(\mu) = 0$

α	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
0,0	0,0000	3,8317	7,0156	10,1735	13,3237	16,4706
0,01	0,1412	3,8343	7,0170	10,1745	13,3244	16,4712
0,02	0,1995	3,8369	7,0184	10,1754	13,3252	16,4718
0,03	0,2814	3,8421	7,0213	10,1774	13,3267	16,4731
0,06	0,3438	3,8473	7,0241	10,1794	13,3282	16,4743
0,08	0,3960	3,8525	7,0270	10,1813	13,3297	16,4755
0,10	0,4417	3,8577	7,0298	10,1833	13,3312	16,4767
0,15	0,5376	3,8706	7,0369	10,1882	13,3349	16,4797
0,20	0,6170	3,8835	7,0440	10,1931	13,3387	16,4828
0,30	0,7465	3,9091	7,0582	10,2029	13,3462	16,4888
0,40	08516	3,9344	7,0723	10,2127	13,3537	16,4949
0,50	0,9408	3,9594	7,0864	10,2225	13,3611	16,5010
0,60	1,0184	3,9841	7,1004	10,2322	13,3686	16,5070
0,70	1,0873	4,0085	7,1143	10,2419	13,3761	16,5131
0,80	1,1490	4,0325	7,1282	10,2519	13,3835	16,5191
0,90	1,2048	4,0562	7,1421	10,2613	13,3910	16,5251
1,0	1,2558	4,0795	7,1558	10,2710	13,3984	16,5312
1,5	1,4569	4,1902	7,2223	10,3188	13,4353	16,5612
2,0	1,5994	4,2910	7,2884	10,3658	13,4719	16,5910
3,0	1,7887	4,4634	7,4103	10,4566	13,5434	16,6499
4,0	1,9081	4,6018	7,5201	10,5423	13,6125	16,7073
5,0	1,9898	4,7131	7,6177	10,6223	13,6786	16,7630
6,0	2,0490	4,8033	7,7039	10,6964	13,7414	16,8168
7,0	2,0937	4,8772	7,7797	10,7646	13,8008	16,8684
8,0	2,1286	4,9384	7,8464	10,8271	13,8566	16,9179
9,0	2,1566	4,9897	7,9051	10,8842	13,9090	16,9650
10,0	2,1795	5,0332	7,9569	10,9363	13,9580	17,0099
15,0	2,2509	5,1773	8,1422	11,1367	14,1576	17,2008
20,0	2,2880	5,2568	8,2534	11,2677	14,2983	17,3442
30,0	2,3261	5,3410	8,3771	11,4221	14,4221	17,5348

 $\label{eq: Taблицa II.1.7}$ Корни уравнения $\ensuremath{\operatorname{tg}} \ \mu = -\frac{\mu}{h}$

	1			1	1	, ,
h	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
0	1,5708	4,7124	7,8540	10,9956	14,1372	17,2788
0,1	1,6320	4,7335	7,8667	11,0047	14,1443	17,2845
0,2	1,6887	4,7544	7,8794	11,0137	14,1513	17,2903
0,3	1,7414	4,7751	7,8920	11,0228	14,1584	17,2961
0,4	1,7906	4,7956	7,9046	11,0318	14,1654	17,3019
0,5	1,8366	4,8158	7,9171	11,0409	14,1724	17,3076
0,6	1,8798	4,8358	7,9295	11,0498	14,1795	17,3134
0,7	1,9203	4,8556	7,9419	11,0588	14,1865	17,3192
0,8	1,9586	4,8751	7,9542	11,0677	14,1935	17,3249
0,9	1,9947	4,8943	7,9665	11,0767	14,2005	17,3306
1,0	2,0288	4,9132	7,9787	11,0856	14,2075	17,3364
1,5	2,1746	5,0037	8,0382	11,1296	14,2421	17,3649
2,0	2,2889	5,0870	8,0965	11,1727	14,2764	17,3932
3,0	2,4557	5,2329	8,2045	11,2560	14,3434	17,4490
4,0	2,5704	5,3540	8,3029	11,3349	14,4080	17,5034
5,0	2,6537	5,4544	8,3914	11,4086	14,4698	17,5562
6,0	2,7165	5,5378	8,4703	11,4773	14,5288	17,6072
7,0	2,7654	5,6078	8,5406	11,5408	14,5847	17,6562
8,0	2,8044	5,6069	8,6031	11,5994	14,6374	17,7032
9,0	2,8363	5,7172	8,6587	11,6532	14,0880	17,7481
10,0	2,8628	5,7606	8,7083	11,7027	14,7335	17,7908
15,0	2,9176	5,9080	8,8898	11,8959	14,9251	17,9742
20,0	2,9930	5,9921	9,0019	12,0250	15,0625	18,1136
30,0	3,0406	6,0831	9,1294	12,1807	15,2380	18,3018
40,0	3,0651	6,1311	9,1986	12,2688	15,3417	18,4180
50,0	3,0801	6,1606	9,2420	12,3247	15,4090	18,4953

Таблица П.1.8 Значения функций Бесселя $J_0(x),\ J_1(x),\ N_0(x),\ N_1(x)$

x	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
0,0	1,0000	0,0000	- ∞	- ∞
0,1	0,9975	0,0499	-1,534	-6,459
0,2	0,9900	0,0995	-1,081	-3,324
0,3	0,9776	0,1483	-0,8073	-2,293
0,4	0,9604	0,1960	-0,6060	-1,781
0,5	0,9385	0,2423	-0,4445	-1,471
0,6	0,9120	0,2867	-0,3085	-1,260
0,7	0,8812	0,3290	-0,1907	-1,103
0,8	0,8463	0,3688	-0,0868	-0,9781
0,9	0,8075	0,4059	+0,0056	-0,8781
1,0	0,7652	0,4401	0,0883	-0,7812
1,1	0,719,6	0,4709	0,1622	-0,6981
1,2	0,6711	0,4983	0,2281	-0,6211
1,3	0,6201	0,5220	0,2865	-0,5485
1,4	0,5669	0,5419	0,3379	-0,4791
1,5	0,5118	0,5579	0,3824	-0,4123
1,6	0,4554	0,5699	0,4204	-0,3476
1,7	0,3980	05778	0,4520	-0,2847
1,8	0,3400	0,5815	0,4704	-0,2237
1,9	0,2818	0,5812	0,4968	-0,1644
2,0	0,2239	0,5767	0,5104	-0,1070
2,1	0,1666	0,5683	0,5183	-0,0517
2,2	0,1104	0,5560	0,5208	+0,0015
2,3	0,0555	0,5399	0,5181	0,0523
2,4	0,0025	0,5202	0,5104	0,1005
2,5	-0,0484	0,4971	0,4981	0,1459
2,6	-0,0968	0,4708	0,4812	0,1884
2,7	-0,1424	0,4416	0,4605	0,2276
2,8	-0,1850	0,4097	0,4359	0,2635
2,9	-0,2243	0,3754	0,4079	0,2959
3,0	-0,2601	0,3391	0,3769	0,3247
3,1	-2,2921	0,3009	0,3431	0,3496
3,2	-0,3202	0,2612	0,3071	03707
3,3	-0,3443	0,2207	0,2691	0,3879
3,4	-0,3643	0,1792	0,2296	0,4010
3,5	-0,3801	0,1374	0,1890	0,4102
3,6	-0,3918	0,0955	0,1477	0,4154
3,7	-0,2992	0,0538	0,1061	0,4167

Продолжение табл. П.1.8

	T		Продол	іжение таол. 11.
\boldsymbol{x}	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
3,8	-0,4026	0,0128	0,0645	0,4141
3,9	-0,4018	-0,0272	0,0234	0,4078
4,0	-0,3971	-0,0660	-0,0169	0,3979
4,1	-0,3887	-0,1033	-0,0561	0,3846
4,2	-0,3766	-0,1386	-0,0938	0,3680
4,3	-0,3610	-0,1719	-0,1296	0,3484
4,4	-0,3423	-0,2028	-0,1633	0,3260
4,5	-0,3205	-0,2311	-0,1947	0,3010
4,6	-0,2961	-02566	-0,2235	0,2737
4,7	-0,2693	-0,2791	-0,2494	0,2445
4,8	-0,2404	-0,2985	-0,2723	0,2136
4,9	-0,2097	-0,3147	-0,2921	0,1812
5,0	-0,1776	-0,3276	-0,3085	0,1479
5,1	-0,1443	-0,3371	-0,3216	0,1137
5,2	-0,1103	-0,3432	-0,3313	0,0792
5,3	-0,0758	-0,3460	-0,3374	0,0445
5,4	-0,0412	-0,3453	-0,3402	0,0101
5,5	-0,0068	-0,3414	-0,3395	-0,0238
5,6	+0,0270	-0,3343	-0,3354	-0,0568
5,7	0,0599	-0,3241	-0,3282	-0,0887
5,8	0,0917	-0,3110	-0,3177	-0,1192
5,9	0,1220	-0,2951	-0,3044	-0,1481
6,0	0,1506	-0,2767	-0,2882	-0,1750
6,1	0,1773	-0,2559	-0,2684	-0,1998
6,2	0,2017	-0,2329	-,02483	-0,2223
6,3	0,2238	-0,2081	-0,2251	-0,2422
6,4	0,2433	-0,1816	-0,1999	-02596
6,5	0,2601	-0,1538	-0,1732	-0,2741
6,6	0,2740	-0,1250	-0,1452	-0,2857
6,7	0,2851	-0,0953	-0,1162	-0,2945
6,8	0,2931	-0,0652	-0,0864	-0,3002
6,9	0,2981	-0,0349	-0,0563	-0,3029
7,0	0,3001	-0,0047	-0,0259	-0,3027
7,1	0,2991	+0,0252	+0,0042	-0,2995
7,2	0,2951	0,0543	0,0339	-0,2934
7,3	0,2882	0,0826	0,0628	-0,2846
7,4	0,2786	0,1096	0,0907	-0,2731
7,5	0,2663	0,1352	0,1173	-0,2591
7,6	0,2516	0,1592	0,1424	-0,2428
7,7	0,2346	0,1813	0,1658	-0,2243

Окончание табл. П.1.8

\boldsymbol{x}	$J_0(x)$	$J_1(x)$	$N_0(x)$	$N_1(x)$
7,8	0,2154	0,2014	0,1872	-0,2039
7,9	0,1944	0,2192	02065	-0,1817
8,0	0,1717	0,2346	0,2235	-0,1581
8,1	0,1475	0,2476	0,2381	-0,1331
8,2	0,1222	00,2580	0,2501	-0,1072
8,3	0,0960	0,2657	0,2595	-0,0806
8,4	0,0692	0,2708	0,2662	-0,0535
8,5	0,0419	0,2731	0,2702	-0,0262
8,6	0,0146	0,2728	02715	+0,0011
8,7	-0,0125	0,2697	0,2700	0,0280
8,8	-0,0392	0,2641	0,2659	0,0544
8,9	-0,0653	0,2559	0,2592	0,0799
9,0	-0,0903	0,2453	0,2499	0,1043
9,1	0,1142	0,2324	0,2383	0,1275
9,2	-0,1367	0,2174	0,2345	0,1491
9,3	-0,1577	0,2004	0,2086	0,1691
9,4	-0,1768	01816	0,1907	0,1871
9,5	-0,1939	0,1613	0,1712	0,2032
9,6	-0,2090	0,1395	0,1502	0,2171
9,7	-0,2218	0,1166	0,1279	0,2287
9,8	-0,2323	0,0928	0,1045	0,2379
9,9	-0,2403	0,0684	0,0804	0,2447
10,0	-0,2459	0,0435	0,0557	02490
10,1	-0,2490	0,0184	0,0307	0,2508
10,2	-0,2496	0,0066	0,0056	0,2502
103	-0,2477	0,0313	-0,0193	0,2471
10,4	-0,2434	-0,0555	-0,0437	0,2416

Оператор Лапласа в различных системах координат

Оператор Лапласа Δu в прямоугольной системе координат:

$$\Delta u = \frac{\partial^2 u}{\partial \hat{\rho}^2} + \frac{\partial^2 u}{\partial \hat{\rho}^2} + \frac{\partial^2 u}{\partial \hat{\rho}^2} = u_{xx} + u_{yy} + u_{zz}.$$

Оператор Лапласа Δu в полярной системе координат:

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} = u_{\rho\rho} + \frac{1}{\rho} u_{\rho} + \frac{1}{\rho^2} u_{\varphi\varphi}.$$

Оператор Лапласа Δu в цилиндрической системе координат:

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial z^2} = u_{\rho \rho} + \frac{1}{\rho} u_{\rho} + \frac{1}{\rho^2} u_{\phi \phi} + u_{zz}.$$

Оператор Лапласа Δu в сферической системе координат:

$$\Delta u = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin^2 \theta} \cdot \frac{\partial^2 u}{\partial \varphi^2} + \frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) \right] =$$

$$= u_{rr} + \frac{2}{r} u_r + \frac{1}{r^2 \sin^2 \theta} u_{\varphi \varphi} + \frac{1}{r^2 \sin \theta} \left(\sin \theta \cdot u_{\theta} \right)_{\theta}.$$

Общее решение уравнения Лапласа

в круговой области

Общее решение уравнения Лапласа в круговой области имеет вид

$$u(\rho,\varphi) = a \cdot \ln \rho + b + \sum_{k=1}^{\infty} \left[\left(a_k \rho^k + b_k \rho^{-k} \right) \cos k\varphi + \left(c_k \rho^k + d_k \rho^{-k} \right) \sin k\varphi \right].$$

Оглавление

1. Элементы функционального анализа	3
1.1. Евклидовы пространства	
1.2. Задача Штурма-Лиувилля	
2. Специальные функции	12
2.1. Ортогональные многочлены	12
2.2. Цилиндрические функции	
3. Постановка простейших задач математической физики	19
3.1. Задача теплопроводности	19
3.2. Задача малых колебаний	
3.3. Задачи, приводящиеся к уравнению Лапласа	
3.4. Приведение уравнений к каноническому виду	28
4. Метод Фурье разделения переменных	33
4.1. Метод Фурье для однородного уравнения и однородных граничных	
условий	33
4.2. Метод Фурье для неоднородного уравнения и однородных гранични	
условий	43
4.3. Метод Фурье для задачи с неоднородными граничными условиями	
4.4. Решение краевых задач для уравнения Лапласа	
5. Метод интегральных преобразований	63
5.1. Колебания бесконечной и полубесконечной струны.	<i>C</i> A
Формула Даламбера	64
5.2. Распространение тепла в бесконечном и полубесконечном стержне.	
Функция Грина	
6. Вариационное исчисление	74
6.1. Экстремум функционала $F(y) = \int_{0}^{b} f(x,y(x),y'(x)) dx$	75
a	
6.2 December of the second of $f(x, y, y) = \int_{a}^{b} f(x, y, y, y) dy$	77
0.2. Экстремум функционала $F(y_1,,y_n) = \int_a^b f(x,y_1,,y_n,y_1,,y_n) dx$	//
6.2. Экстремум функционала $F(y_1,,y_n) = \int_a^b f(x,y_1,,y_n,y_1',,y_n')dx$	78
6.4. Условный экстремум	
Библиографический список	
Приложение 1	
Приложение 2	93
припожение Z	91

Учебное издание

Минькова Ревекка Максовна

Методы математической физики в примерах и задачах

Редактор И.В. Коршунова

Компьютерная верстка Р.М. Миньковой

Редакционно-издательский отдел УрФУ 620002, г. Екатеринбург, ул. Мира, 19