Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б.Н. Ельцина

Н. В. Чуксина, Р. М. Минькова

Руководство к решению задач по математическому анализу

Учебное пособие для студентов физико-технологического института

> Екатеринбург УрФУ 2013

УДК 517(075.8) ББК 22.161я73

Рецензенты:

кафедра прикладной математики Уральского государственного экономического университета

(зав. кафедрой, доц., канд. физ.-мат. наук Ю.Б. Мельников);

старший научный сотрудник Института математики и механики УрО РАН, проф., д-р физ.-мат. наук Е.Ф. Леликова;

Научный редактор – доц., канд. физ.-мат. наук Е.А. Голикова

Авторы: Н.В. Чуксина, Р.М. Минькова, В.В. Трещева

Ч 79 Руководство к решению задач по математическому анализу.

Учебное пособие для студентов физико-технологического института. / Н.В. Чуксина, Р.М. Минькова, В.В. Трещева. Екатеринбург:УРФУ, 2013. 56 с.

ISBN 5-321-00550-8

В учебном пособии разбирается решение типовых примеров и задач по следующим темам: предел, непрерывность, дифференцируемость функции одной переменной, общие теоремы анализа, исследование функций и построение их графиков, неопределенный определенный, несобственный интегралы. Пособие предназначено для студентов технологических специальностей физикотехнического факультета.

Библиогр.: 9 назв. Рис. 20

Подготовлено кафедрой «Вычислительные методы и уравнения математической физики» при поддержке физико-технического факультета

УДК 517.2/.3 (075.8) ББК 22.161.1я73

ISBN

© Уральский федеральный университет, 2013

Оглавление

1. Предел функции и последовательности	4
1.1. Определение предела функции и последовательности	
1.2. Предел элементарной функции	
1.3. Бесконечно малые функции. Неопределенность $\left[\frac{0}{0}\right]$	
1.4. Бесконечно большие функции. Неопределенности $\left[\frac{\infty}{\infty}\right]$, $\left[\infty-\infty\right]$, $\left[0\cdot\infty\right]$	9
1.5. Второй замечательный предел. Неопределенность $\lceil 1^{\infty} \rceil$	10
2. Непрерывность функции	12
3. Производные	14
3.1. Определение производной идифференциала	
3.2. Геометрический смысл производной	
3.3. Дифференцирование по формулам	
3.4. Логарифмическое дифференцирование	
3.5. Дифференцирование параметрически заданных функций	18
3.6. Правило Лопиталя	
3.7. Формула Тейлора	
4. Исследование функций. Построение графиков	
5. Неопределенный интеграл	
5.1.Таблица основных интегралов	
5.2. Метод подведения под знак дифференциала	
 5.3. Метод интегрирования по частям 	
5.4. Метод замены переменной	
5.5. Интегрирование тригонометрических функций	
5.6. Интегрирование функций, содержащих квадратный трехчлен	
5.7. Интегрирование рациональных дробей	
6. Определенный интеграл.	
6.1. Свойства определенного интеграла	
6.2. Методы вычисления определенного интеграла	
6.3 Геометрические приложения определенного интеграла	
7. Несобственные интегралы 1 7. Несобственные интегралы 1	
7.1. Несобственные интегралы первого рода	
7.2. Несобственные интегралы второго рода	
Библиографический список	55

1. Предел функции и последовательности

1.1. Определение предела функции и последовательности

Пример 1.1. Записать определение предела функции на языке окрестностей и на языке неравенств:

a)
$$\lim_{x\to -1} f(x) = 2$$
;

$$\delta) \lim_{x \to -\infty} f(x) = 0;$$

$$B) \lim_{x\to 3} f(x) = +\infty.$$

Решение. a). $\lim_{x\to -1} f(x) = 2$, если для всех x, достаточно

близких к -1, соответствующие значения f(x) как угодно близки к 2 (рис.1).

Поясним: f(x) как угодно близко к 2, то есть

$$f(x) \in S_{\varepsilon}(2)$$
 для $\forall \varepsilon > 0$;

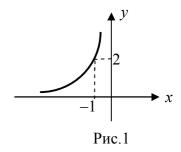


Рис.2

x

x достаточно близко к -1, то есть $\exists \delta > 0 : x \in \mathring{S_{\delta}}(-1)$).

Определение на языке окрестностей:

 $\lim_{x\to -1} f(x) = 2$, если для любого числа $\varepsilon > 0$ существует такое число $\delta = \delta(\varepsilon) > 0$,

что значения f(x) будут принадлежать ε -окрестности точки 2 для всех x, принадлежащих выколотой δ -окрестности точки -1. Или кратко:

для $\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0$ такое, что $f(x) \in S_{\varepsilon}(2)$ для всех $x \in S_{\delta}^{\circ}(-1)$.

Определение на языке неравенств: $\lim_{x \to -1} f(x) = 2$, если для $\forall \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0$ такое,

что $|f(x)-2| < \varepsilon$ как только $0 < |x+1| < \delta$.

б).
$$\lim_{x \to -\infty} f(x) = 0$$
 (рис.2).

На языке окрестностей.

$$\lim_{x\to -\infty} f(x) = 0$$
, если для $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что

$$f(x) \in S_{\mathcal{E}}(0)$$
 для $\forall x \in S_{\delta}(-\infty)$.

На языке неравенств:

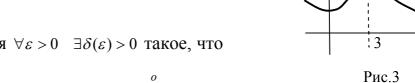
$$\lim_{x\to -\infty} f(x) = 0$$
 , если для $\forall \varepsilon > 0 \,\exists \, \delta(\varepsilon) > 0$ такое, что

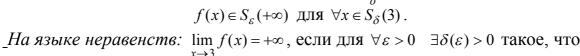
$$|f(x)| < \varepsilon$$
 для $\forall x < -\delta$.

B).
$$\lim_{x\to 3} f(x) = +\infty$$
 (puc.3).

На языке окрестностей:

$$\lim_{x\to 3} f(x) = +\infty$$
, если для $\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0$ такое, что





 $f(x) > \varepsilon$ как только $0 < |x-3| < \delta$.

Пример 1.2. Доказать, пользуясь определением предела, что

a)
$$\lim_{x\to 5} \sqrt{x+4} = 3$$
,

$$6) \lim_{n\to\infty}\frac{\sin n}{n}=0.$$

Решение. а). По определению предела для $\forall \varepsilon > 0$ требуется найти соответствующее ему $\delta(\varepsilon) > 0$ так, чтобы выполнялось неравенство $|\sqrt{x+4} - 3| < \varepsilon$, как только $0 < |x-5| < \delta$. Преобразуем выражение $|\sqrt{x+4} - 3|$:

$$\left| \sqrt{x+4} - 3 \right| = \left| \frac{\left(\sqrt{x+4} - 3 \right) \cdot \left(\sqrt{x+4} + 3 \right)}{\sqrt{x+4} + 3} \right| = \frac{\left| x - 5 \right|}{\left| \sqrt{x+4} + 3 \right|}.$$

Оценим это выражение сверху, учитывая, что $\sqrt{x+4} + 3 \ge 3$. Тогда

$$\frac{1}{\left|\sqrt{x+4}+3\right|} = \frac{1}{\sqrt{x+4}+3} \le \frac{1}{3} \quad \text{M} \quad \left|\sqrt{x+4}-3\right| = \frac{\left|x-5\right|}{\left|\sqrt{x+4}+3\right|} \le \frac{\left|x-5\right|}{3} < \varepsilon,$$

как только $|x-5| < 3\varepsilon$. Тогда в качестве искомого δ можно взять $\delta = 3\varepsilon$. Таким образом, для любого $\varepsilon > 0$ нашлось $\delta = 3\varepsilon$ такое, что $\left| \sqrt{x+4} - 3 \right| < \varepsilon$, как только для x выполнится условие $0 < |x-5| < 3\varepsilon$.

б). Для доказательства того, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$, требуется для

$$\forall \varepsilon > 0$$
 найти $N > 0$ такое, что $\left| \frac{\sin n}{n} \right| < \varepsilon$ для $\forall n > N$.

Так как $|\sin n| \le 1$, то $\left|\frac{\sin n}{n}\right| \le \frac{1}{n} < \varepsilon$, как только $n > \frac{1}{\varepsilon}$. Таким образом, для любого $\varepsilon > 0$ нашли $N = \frac{1}{\varepsilon}$ такое, что $\left|\frac{\sin n}{n}\right| < \varepsilon$ для $\forall n > \frac{1}{\varepsilon}$.

Пример 1.3. Используя односторонние пределы функции, установить, суще-

cm by em
$$nu$$
 npeden: a) $\lim_{x\to 0} 2^{\frac{1}{x}}$, b) $\lim_{x\to 1} \arctan \frac{x+2}{x-1}$.

Решение а). При $x \to +0$ имеем: $\frac{1}{x} \to +\infty$ и $\lim_{x \to +0} 2^{\frac{1}{x}} = \infty$;

при
$$x \to -0$$
 имеем: $\frac{1}{x} \to -\infty$ и $\lim_{x \to -0} 2^{\frac{1}{x}} = 0$.

Так как $\lim_{x \to +0} 2^{\frac{1}{x}} \neq \lim_{x \to -0} 2^{\frac{1}{x}}$, то $\lim_{x \to 0} 2^{\frac{1}{x}}$ не существует.

б). Для функции $\arctan \frac{x+2}{x-1}$

при $x \rightarrow 1 + 0$ имеем:

$$x + 2 \to 3$$
, $x - 1 \to +0$, $\frac{x + 2}{x - 1} \to +\infty$ u $\lim_{x \to 1+0} arctg \frac{x + 2}{x - 1} = \frac{\pi}{2}$;

при $x \rightarrow 1-0$ имеем:

$$x + 2 \to 3$$
, $x - 1 \to -0$, $\frac{x + 2}{x - 1} \to -\infty$ H $\lim_{x \to 1 \to 0} \arctan \frac{x + 2}{x - 1} = \frac{-\pi}{2}$.

Так как $\lim_{x\to 1+0} \arctan \frac{x+2}{x-1} \neq \lim_{x\to 1-0} \arctan \frac{x+2}{x-1}$, то $\lim_{x\to 1} \arctan \frac{x+2}{x-1}$ не существует.

Пример 1.4. Исследовать на сходимость последовательности

a)
$$u_n = \frac{2^n + (-2)^n}{2^n}$$
, δ) $u_n = \text{ctg}\left(\frac{\pi}{4} + \frac{\pi n}{2}\right)$.

Решение. а). Рассмотрим подпоследовательности $\{u_{2k}\}$, $\{u_{2k+1}\}$ и найдем их

пределы при
$$k \to \infty$$
:
$$\lim_{k \to \infty} u_{2k} = \lim_{k \to \infty} \frac{2^{2k} + (-2)^{2k}}{2^{2k}} = \lim_{k \to \infty} \frac{2 \cdot 2^{2k}}{2^{2k}} = \lim_{k \to \infty} 2 = 2 ,$$

$$\lim_{k \to \infty} u_{2k+1} = \lim_{k \to \infty} \frac{2^{2k+1} + (-2)^{2k+1}}{2^{2k+1}} = \lim_{k \to \infty} \frac{0}{2^{2k+1}} = 0 .$$

Так как пределы подпоследовательностей различны, то предела последовательности u_n не существует.

б). Рассмотрим подпоследовательности :

$$u_{2k} = \operatorname{ctg}\left(\frac{\pi}{4} + \frac{\pi \cdot 2k}{2}\right) = \operatorname{ctg}\left(\frac{\pi}{4} + \pi k\right) = \operatorname{ctg}\frac{\pi}{4} = 1,$$

$$u_{2k+1} = \operatorname{ctg}\left(\frac{\pi}{4} + \frac{\pi \cdot (2k+1)}{2}\right) = \operatorname{ctg}\left(\frac{\pi}{4} + \frac{\pi}{2} + \pi k\right) = \operatorname{ctg}\frac{3\pi}{4} = -1.$$

Найдем их пределы при $k \to \infty$: $\lim_{k \to \infty} u_{2k} = \lim_{k \to \infty} 1 = 1$, $\lim_{k \to \infty} u_{2k+1} = \lim_{k \to \infty} (-1) = -1$.

Так как пределы подпоследовательностей различны, то предела последовательности не существует.

1.2. Предел элементарной функции

Предел элементарной функции при $x \to a$ равен значению функции в точке a, если функция определена в этой точке.

Пример 1.5. Вычислить пределы: a) $\lim_{x\to 0} \frac{5x^2+2}{2x-1}$; б) $\lim_{x\to 1} \sin \frac{2x-1}{x}$.

Решение.

- а). Так как функция $f(x) = \frac{5x^2 + 2}{2x 1}$ элементарна и определена при x = 0, то $\lim_{x \to 0} f(x) = f(0) = \frac{0 + 2}{0 1} = -2.$
- б). Так как функция $f(x) = \sin \frac{2x-1}{x}$ элементарна и определена при x=1, то $\lim_{x\to 1} f(x) = f(1) = \sin \frac{2-1}{1} = \sin 1.$

1.3. Бесконечно малые функции. Неопределенность $\left\lceil \frac{0}{0} \right\rceil$

 Φ ункция f(x) называется бесконечно малой при $x \to a$, если $\lim_{x \to a} f(x) = 0$.

Пример 1.6. Вычислить $\lim_{x\to a} f(x)$, где

a)
$$f(x) = \sqrt{4\cos x + \sin\frac{1}{x} \cdot \ln(1+x)}$$
, $a = 0$, 6) $f(x) = \frac{\cos 2\pi x}{2 + (e^{\sqrt{x-1}} - 1) \cdot \arctan((x+2)/(x-1))}$, $a = 1$.

6

Решение. а). Функция f(x) не определена в точке x = 0.

Кроме того, $\lim_{x\to 0} \sin\frac{1}{x}$ не существует, но $\left|\sin\frac{1}{x}\right| \le 1$, то есть функция $\sin\frac{1}{x}$ ограничена. Функция $\ln(1+x)$ есть бесконечно малая при $x\to 0$, так как $\lim_{x\to 0} \ln(1+x) = \ln 1 = 0$. По теореме о произведении бесконечно малой функции на ограниченную функцию получаем, что $\sin\frac{1}{x}\cdot\ln(1+x)$ – бесконечно малая функция при $x\to 0$ и ее предел при $x\to 0$ равен нулю. Кроме того, $\lim_{x\to 0} 4\cos x = 4\cos 0 = 4$. Поэтому

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sqrt{4\cos x + \sin \frac{1}{x} \cdot \ln(1+x)} = \sqrt{4+0} = 2.$$

б). Функция f(x) не определена в точке x=1. Кроме того, $\lim_{x\to 1} \arctan \frac{x+2}{x-1}$ не существует, но $\left|\arctan \frac{x+2}{x-1}\right| < \frac{\pi}{2}$, значит, функция $\arctan \frac{x+2}{x-1}$ ограничена. Так как $\lim_{x\to 1} \left(e^{\sqrt{x-1}}-1\right) = e^{\sqrt{1-1}}-1 = 1-1 = 0$, то функция $(e^{\sqrt{x-1}}-1)$ – бесконечно малая при $x\to 1$. Тогда по теореме о произведении бесконечно малой функции на ограниченную получаем, что $(e^{\sqrt{x-1}}-1) \cdot \arctan \frac{x+2}{x-1}$ – бесконечно малая функция при $x\to 1$ и $\lim_{x\to 1} \left(e^{\sqrt{x-1}}-1\right) \cdot \arctan \frac{x+2}{x-1} = 0$. Учитывая, что $\lim_{x\to 1} \cos 2\pi x = \cos 2\pi = 1$, получим:

$$\lim_{x \to 1} \frac{\cos 2\pi x}{2 + (e^{\sqrt{x-1}} - 1) \arctan \frac{x+2}{x-1}} = \frac{1}{2+0} = \frac{1}{2}.$$

Пример 1.7. Вычислить пределы:

a)
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{3x^2 + 2x - 5}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{\sqrt{x + 9} - 3}$; B) $\lim_{x \to 0} \frac{\sqrt[3]{1 + x} - \sqrt[3]{1 - x}}{x}$.

Решение. а). Числитель $P(x) = x^3 + x^2 - 5x + 3$ и знаменатель $Q(x) = 3x^2 + 2x - 5$ дроби при $x \to 1$ обращаются в ноль. Значит, имеем неопределенность вида $\left[\frac{0}{0}\right]$. Так как x = 1 – корень многочленов P(x) и Q(x), то эти многочлены делятся нацело на (x-1). Поделив эти многочлены на (x-1), можно разложить их на множители: $x^3 + x^2 - 5x + 3 = (x-1) \cdot (x^2 + 2x - 3)$, $3x^2 + 2x - 5 = (x-1) \cdot (3x + 5)$. Значит, $\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{3x^2 + 2x - 5} = \lim_{x \to 1} \frac{(x-1) \cdot (x^2 + 2x - 3)}{(x-1) \cdot (3x + 5)} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{3x + 5} = 0$.

Значит, $\lim_{x \to 1} \frac{1}{3x^2 + 2x - 5} = \lim_{x \to 1} \frac{1}{(x - 1) \cdot (3x + 5)} = \lim_{x \to 1} \frac{1}{3x + 5} = 0.$

б). При x = 0 числитель и знаменатель дроби равны 0, следовательно, имеем неопределенность $\left[\frac{0}{0}\right]$. Так как и числитель, и знаменатель функции

 $f(x) = \frac{\sqrt{x+4}-2}{\sqrt{x+9}-3}$ содержат иррациональные выражения, то умножим числитель

и знаменатель на выражения, сопряженные числителю и знаменателю. Тогда

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{\sqrt{x+9} - 3} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+9} + 3\right)}{\left(\sqrt{x+9} - 3\right) \cdot \left(\sqrt{x+9} + 3\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\sqrt{x+4} - 2}{\sqrt{x+9} - 3} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+9} + 3\right)}{\left(\sqrt{x+9} - 3\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+9} - 3\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+4} + 2\right)}{\left(\sqrt{x+4} - 2\right)} = \lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right) \cdot \left(\sqrt{x+$$

$$= \lim_{x \to 0} \frac{(x+4-4)\cdot(\sqrt{x+9}+3)}{(x+9-9)\cdot(\sqrt{x+4}+2)} = \lim_{x \to 0} \frac{x\cdot(\sqrt{x+9}+3)}{x\cdot(\sqrt{x+4}+2)} = \lim_{x \to 0} \frac{(\sqrt{x+9}+3)}{(\sqrt{x+4}+2)} = \frac{6}{4} = \frac{3}{2}.$$

в). В выражении $\frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$ при $x\to 0$ имеем неопределенность вида $\left\lceil \frac{0}{0} \right\rceil$.

Чтобы получить разность кубов в числителе, умножим числитель и знаменатель на неполный квадрат суммы $\sqrt[3]{(1+x)^2} + \sqrt{1-x^2} + \sqrt[3]{(1-x)^2}$. Тогда

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(1+x) - (1-x)}{x\left(\sqrt[3]{\left(1+x\right)^2} + \sqrt{1-x^2} + \sqrt[3]{\left(1-x\right)^2}\right)} = \lim_{x \to 0} \frac{2}{\sqrt[3]{\left(x+1\right)^2} + \sqrt[3]{\left(1-x^2\right)} + \sqrt[3]{\left(1-x\right)^2}} = \frac{2}{3}.$$

Пример 1.8. При $x \to 1$ функции $f(x) = \frac{1-x}{1+x}$ и $g(x) = 1-\sqrt{x}$ являются бесконечно малыми. Сравнить их.

Решение. Функции f(x) и g(x) – элементарные. Поэтому $\lim_{x\to 1} f(x) = f(1) = 0$, $\lim_{x\to 1} g(x) = g(1) = 0$. Значит, при $x\to 1$ функции f(x) и g(x) являются бесконечно малыми. Сравним их. Для этого вычислим $\lim_{x\to 1} \frac{f(x)}{g(x)}$:

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1 - x}{(1 + x) \cdot (1 - \sqrt{x})} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{(1 - \sqrt{x}) \cdot (1 + \sqrt{x})}{(1 + x) \cdot (1 - \sqrt{x})} = \lim_{x \to 1} \frac{(1 + \sqrt{x})}{(1 + x)} = \frac{2}{2} = 1.$$

Так как $\lim_{x\to 1} \frac{f(x)}{g(x)} = 1$, то функции f(x) и g(x) — эквивалентные бесконечно малые функции при $x\to 1$. Это записывают так: $f(x)\sim g(x)$ при $x\to 1$.

Пример 1.9. Сравнить бесконечно малые функции $f(x) = \operatorname{tg} x$ и $g(x) = x^2$ при $x \to 0$.

Решение. Для того чтобы сравнить две бесконечно малые функции, вычислим $\lim_{x\to 0} \frac{f(x)}{g(x)}$. Воспользуемся следствием из первого замечательного предела:

$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$$
. Тогда $\lim_{x\to 0} \frac{f(x)}{g(x)} = \left[\frac{0}{0}\right] = \lim_{x\to 0} \frac{\operatorname{tg} x}{x^2} = \lim_{x\to 0} \frac{\operatorname{tg} x}{x} \cdot \frac{1}{x} = \infty$ и функция $g(x)$ есть бесконечно малая функция более высокого порядка при $x\to 0$, чем функция $f(x)$.

При отыскании пределов удобно пользоваться следующим утверждением:

предел отношения бесконечно малых функций не меняется при замене их на эквивалентные бесконечно малые.

Напомним эквивалентные бесконечно малые функции:

$$\sin x \sim x$$
, $\tan x \sim x$, $\arctan x \sim x$, $\arctan x \sim x$ при $x \to 0$.

Пример 1.10. Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\arctan 3x}{\arctan 5x}$$
; 6) $\lim_{x\to 0} \frac{x \cdot \sin \sqrt[3]{x}}{(\arctan (x+2\sqrt[3]{x})^2 \cdot \arcsin(x+2\sqrt[3]{x})}$; B) $\lim_{x\to 0} (x+\operatorname{tg} 5x) \cdot \operatorname{ctg} 8x$.

Решение. В примерах а), б) имеем неопределенность $\left[\frac{0}{0}\right]$, в примере в) имеем неопределенность $\left[0 \cdot \infty\right]$, но ее легко можно свести к неопределенности $\left[\frac{0}{0}\right]$.

пеопределенность [о ·∞], но се легко можно свести к пеопределенность

а). При
$$x \to 0$$
 имеем: $arctg 3x \sim 3x$, $arctg 5x \sim 5x$. Таким образом,

$$\lim_{x \to 0} \frac{\arctan 3x}{\arctan 5x} = \lim_{x \to 0} \frac{3x}{5x} = \frac{3}{5}.$$

б). При
$$x \to 0$$
 имеем: $\sin \sqrt[3]{x} \sim \sqrt[3]{x}$, $\arctan \sqrt{x} \sim \sqrt{x}$, $\arcsin(x + 2\sqrt[3]{x}) \sim (x + 2\sqrt[3]{x})$. Поэтому
$$\lim_{x \to 0} \frac{x \cdot \sin \sqrt[3]{x}}{(\arctan \sqrt{x})^2 \cdot \arcsin(x + 2\sqrt[3]{x})} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{x \cdot \sqrt[3]{x}}{(\sqrt{x})^2 (x + 2\sqrt[3]{x})} = \lim_{x \to 0} \frac{\sqrt[3]{x}}{\sqrt[3]{x} \left(\sqrt[3]{x^2} + 2\right)} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x^2} + 2} = \frac{1}{2}.$$

B).
$$\lim_{x \to 0} (x + \lg 5x) \cdot \operatorname{ctg} 8x = \left[0 \cdot \infty\right] = \lim_{x \to 0} \frac{x + \lg 5x}{\lg 8x} = \left[\frac{0}{0}\right].$$

Разобьем данный предел на два и воспользуемся тем, что $tg \, 5x \sim 5x$, $tg \, 8x \sim 8x$ при $x \to 0$. Таким образом, имеем:

$$\lim_{x \to 0} \frac{x}{\lg 8x} + \lim_{x \to 0} \frac{\lg 5x}{\lg 8x} = \lim_{x \to 0} \frac{x}{8x} + \lim_{x \to 0} \frac{5x}{8x} = \frac{1}{8} + \frac{5}{8} = \frac{3}{4}.$$

1.4. Бесконечно большие функции.

Неопределенности
$$\left[\frac{\infty}{\infty}\right]$$
, $\left[\infty; -\infty\right]$, $\left[0; \infty\right]$

Функция f(x) называется бесконечно большой при $x \to a$, если $\lim_{x \to a} f(x) = \infty$.

Пример 1.11. Вычислить пределы: a) $\lim_{x\to\infty} \frac{3x^2 - 2x + 1}{2x - 2}$; б) $\lim_{x\to\infty} \frac{x^2 + 2x}{x^3 + 1}$;

B)
$$\lim_{n\to\infty} \frac{\left(\sqrt{n^2+1}+2n\right)^2}{\sqrt[3]{n^6+1}+3n}$$
; Γ) $\lim_{n\to\infty} \frac{1+7^{n+2}}{3-7^n}$; Γ) $\lim_{n\to\infty} \frac{\left(\sqrt{n^2+1}+n\right)^2}{\sqrt[3]{n^6+1}+n\cos n}$.

Решение. Как известно, при отыскании предела отношения многочленов или иррациональных функций при $x \to \infty$ младшие степени можно отбросить:

a).
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{2x - 2} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{3x^2}{2x} = \lim_{x \to \infty} \frac{3}{2}x = \infty$$
.

$$6). \lim_{x \to \infty} \frac{x^2 + 2x}{x^3 + 1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{x^2}{x^3} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

B).
$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 1} + 2n\right)^2}{\sqrt[3]{n^6 + 1} + 3n} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 2n}\right)^2}{\sqrt[3]{n^6}} = \lim_{n \to \infty} \frac{\left(n + 2n\right)^2}{n^2} = \lim_{n \to \infty} \frac{9n^2}{n^2} = 9$$
.

$$\Gamma). \lim_{n \to \infty} \frac{1 + 7^{n+2}}{3 - 7^n} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{7^n \left(\frac{1}{7^n} + 49\right)}{7^n \left(\frac{1}{7^n} - 1\right)} = \lim_{n \to \infty} \frac{\frac{1}{7^n} + 49}{\frac{1}{7^n} - 1} = -49.$$

д). Иногда полезно вынести за скобки старшую степень в числителе и знаменателе:

$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 1} + n\right)^2}{\sqrt[3]{n^6 + 1} + n\cos n} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{n^2 \left(\sqrt{1 + \frac{1}{n^2}} + 1\right)^2}{n^2 \left(\sqrt[3]{1 + \frac{1}{n^6}} + \frac{1}{n}\cos n\right)} = \lim_{n \to \infty} \frac{\left(\sqrt{1 + \frac{1}{n^2}} + 1\right)^2}{\sqrt[3]{1 + \frac{1}{n^6}} + \frac{1}{n}\cos n} = \frac{2^2}{1 + 0} = 4.$$

При вычислении последнего предела воспользовались тем, что $\frac{1}{n}$ – бесконечно малая функция при $n \to \infty$, а $\cos n$ – ограничена, следовательно, их произведение $\frac{1}{n}\cos n$ есть бесконечно малая функция при $n \to \infty$, то есть $\lim_{n \to \infty} \frac{1}{n} \cdot \cos n = 0$.

Пример 1.12. Вычислить пределы:

a)
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 - 1} - x \right);$$
 6) $\lim_{x \to \infty} \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2} \right).$

Pewerue. a).
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 - 1} - x \right) = \left[\infty - \infty \right] = \lim_{x \to \infty} \left(\frac{x^3 - x^3 - x}{x^2 + 1} \right) = \lim_{x \to \infty} \frac{-x}{x^2} = -\lim_{x \to \infty} \frac{1}{x} = 0$$
.

б). Имеем неопределенность вида $[\infty - \infty]$. Для ее раскрытия умножим и разделим выражение на неполный квадрат суммы и учтем, что $(a-b)(a^2+ab+b^2)=a^3-b^3$. Тогда

$$\lim_{x \to \infty} \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2} \right) = \lim_{x \to \infty} \frac{(x+1)^2 - (x-1)^2}{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x^2-1)^2} + \sqrt[3]{(x-1)^4}} = \lim_{x \to \infty} \frac{(x^2 + 2x + 1) - (x^2 - 2x + 1)}{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x^2-1)^2} + \sqrt[3]{(x-1)^4}} = \lim_{x \to \infty} \frac{4x}{x^{4/3} + x^{4/3} + x^{4/3}} = \lim_{x \to \infty} \frac{4}{3x^{1/3}} = 0.$$

1.5. Второй замечательный предел. Неопределенность $\begin{bmatrix}1^{\infty}\end{bmatrix}$

При раскрытии неопределенности $\begin{bmatrix} 1^{\infty} \end{bmatrix}$ полезно использовать второй замечательный предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to 0} \left(1 + y \right)^{1/y} = e \ .$$

Пример 1.13. Вычислить $\lim_{x\to\infty} \left(\frac{x+1}{x-2}\right)^{2x+1}$.

Решение. Имеем неопределенность вида $[1^{\infty}]$. Выделим целую часть дроби

$$\frac{x+1}{x-2} = \frac{x-2+3}{x-2} = 1 + \frac{3}{x-2}.$$
 Так как $\frac{3}{x-2} \to 0$ при $x \to \infty$, то $\lim_{x \to \infty} \left(1 + \frac{3}{x-2}\right)^{\frac{x-2}{3}} = e$ и

$$\lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x+1} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left(1 + \frac{3}{x-2} \right)^{2x+1} = \lim_{x \to \infty} \left[\left(1 + \frac{3}{x-2} \right)^{\frac{x-2}{3}} \right]^{\frac{3}{x-2} \cdot (2x+1)} = e^{\lim_{x \to \infty} \frac{6x+3}{x-2}} = e^{6}.$$

Пример 1.14. Вычислить $\lim_{x\to 0} \left(\frac{1+3x}{1-x}\right)^{\frac{1}{\sin 2x}}$.

Решение. Имеем неопределенность вида $[1^{\infty}]$. В отличие от предыдущего примера, удобнее свести выражение ко второму замечательному пределу отдельно в числителе и в знаменателе:

$$\lim_{x \to 0} (1+3x)^{\frac{1}{\sin 2x}} = \left[1^{\infty}\right] = \lim_{x \to 0} \left[(1+3x)^{1/3x} \right]^{3x \cdot \frac{1}{\sin 2x}} = \exp\left(\lim_{x \to 0} \frac{3x}{\sin 2x}\right) = \exp\left(\frac{3}{2}\right) = e^{3/2};$$

$$\lim_{x \to 0} (1-x)^{\frac{1}{\sin 2x}} = \left[1^{\infty}\right] = \lim_{x \to 0} \left[\left(1+(-x)\right)^{1/(-x)}\right]^{(-x)} \cdot \frac{1}{\sin 2x} = \exp\left(\lim_{x \to 0} \frac{-x}{\sin 2x}\right) = \exp\left(-\frac{1}{2}\right) = e^{-1/2}.$$

$$\text{Поэтому } \lim_{x \to 0} \left(\frac{1+3x}{1-x} \right)^{\frac{1}{\sin 2x}} = \lim_{x \to 0} \frac{(1+3x)^{\frac{1}{\sin 2x}}}{(1-x)^{\frac{1}{\sin 2x}}} = \frac{e^{3/2}}{e^{-1/2}} = e^2.$$

Пример 1.15. Вычислить $\lim_{x\to 1} (3-2x)^{\frac{x}{1-x}}$.

Решение. Имеем неопределенность вида $[1^{\infty}]$. Для того чтобы воспользоваться вторым замечательным пределом, выделим в скобке единицу:

$$3-2x=1+(2-2x)=1+2(1-x)$$
.

Произведем замену переменной: t = 1 - x, где $t \to 0$ при $x \to 1$. Тогда

$$\lim_{x \to 1} (3 - 2x)^{\frac{x}{1 - x}} = \lim_{t \to 0} (1 + 2t)^{\frac{1 - t}{t}} = \lim_{t \to 0} \left[(1 + 2t)^{1/2t} \right]^{\frac{2t}{t}} = \exp\left(\lim_{t \to 0} 2(1 - t)\right) = e^{2}.$$

Пример 1.16. Вычислить $\lim_{x\to\pm\infty} \left(\frac{2x+1}{x-1}\right)^x$.

Решение.
$$\lim_{x \to \pm \infty} \left(\frac{2x+1}{x-1} \right)^x = \left[2^{\pm \infty} \right] = \left\{ \begin{array}{l} \infty, \text{ при } x \to +\infty \\ 0, \text{ при } x \to -\infty \end{array} \right.$$

Пример 1.17. Вычислить $\lim_{x\to\infty} (x-5) \cdot (\ln(x-3) - \ln x)$.

Решение. Воспользовавшись свойствами логарифмов, получим

$$\lim_{x \to \infty} (x - 5)(\ln(x - 3) - \ln x) = \left[\infty \cdot (\infty - \infty)\right] = \lim_{x \to +\infty} \ln\left(\frac{x - 3}{x}\right)^{x - 5} = \ln\left(\lim_{x \to +\infty} \left(\frac{x - 3}{x}\right)^{x - 5}\right) = \ln\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{x - 5} = \ln\lim_{x \to \infty} \left[\left(1 + \frac{-3}{x}\right)^{-x/3}\right]^{(x - 5) \cdot (-3/x)} = \ln e^{\lim_{x \to \infty} (-3x + 15)/x} = \ln e^{-3} = -3.$$

2. Непрерывность функции

Функция
$$f(x)$$
 непрерывна в точке x_0 , если $\lim_{x \to x_0} f(x) = f(x_0)$.

Это равенство означает выполнение трех условий:

- 1) функция f(x) определена в точке x_0 и ее окрестности,
- 2) функция f(x) имеет предел при $x \to x_0$ или, что равносильно, существуют и равны односторонние пределы $f(x_0 0)$ и $f(x_0 + 0)$,
- 3) предел функции f(x) при $x \to x_0$ равен значению функции в точке x_0 .

Пример 2.1. Исследовать на непрерывность функцию
$$f(x) = \frac{x+3}{\sqrt{(x^2+5x+6)^2}}$$
.

Решение. Эта функция элементарна и определена для всех x, кроме нулей знаменателя x=-2, x=-3. Поэтому она непрерывна во всех точках x, кроме x=-2, x=-3; точки x=-2, x=-3 являются точками разрыва функции. Для установления типа точек разрыва преобразуем функцию и найдем пределы

$$f(x) = \frac{x+3}{\sqrt{\left(x^2 + 5x + 6\right)^2}} = \frac{x+3}{\left|x^2 + 5x + 6\right|} = \frac{x+3}{\left|x+2\right| \cdot \left|x+3\right|},$$

$$\lim_{x \to -2} f(x) = \infty,$$

$$\lim_{x \to -3+0} f(x) = \lim_{\substack{x \to -3 \\ x > -3}} \frac{x+3}{\left|x+2\right| \cdot \left|x+3\right|} = \lim_{x \to -3} \frac{x+3}{\left|x+2\right| \cdot \left(x+3\right)} = \lim_{x \to -3} \frac{1}{\left|x+2\right|} = 1,$$

$$\lim_{x \to -3-0} f(x) = \lim_{\substack{x \to -3 \\ x < -3}} \frac{x+3}{\left|x+2\right| \cdot \left|x+3\right|} = \lim_{x \to -3} \frac{x+3}{\left|x+2\right| \cdot \left(x+3\right) \cdot \left(-1\right)} = -\lim_{x \to -3} \frac{1}{\left|x+2\right|} = -1.$$

Так как в точке x = -2 предел бесконечен, то x = -2 — точка разрыва 2 рода; в точке x = -3 односторонние пределы конечны, но не равны между собой, следовательно, x = -3 — точка конечного разрыва 1 рода (скачок).

Пример 2.2. Исследовать на непрерывность функцию
$$f(x) = \begin{cases} x, & x < -1, \\ x^2 - 2, & x > -1, \\ 0, & x = -1. \end{cases}$$

Решение. При x < -1 и x > -1 функция f(x) совпадает с непрерывными элементарными функциями, следовательно, непрерывна. Исследуем точку x = -1:

$$\lim_{x \to -1-0} f(x) = \lim_{x \to -1} x = -1, \quad \lim_{x \to -1+0} f(x) = \lim_{x \to -1} \left(x^2 - 2\right) = -1.$$

Односторонние пределы существуют, конечны и равны между собой, то есть существует $\lim_{x\to -1} f(x) = -1$, но $f(-1) = 0 \neq \lim_{x\to -1} f(x)$ и, следовательно, x = -1 есть точка устранимого разрыва 1-го рода.

Пример 2.3. Исследовать функцию на непрерывность, указать тип точек

разрыва: a)
$$f(x) = \frac{1}{\ln|x|}$$
, b) $f(x) = \frac{\operatorname{tg} x}{x}$, b) $f(x) = \frac{2^{1/x} - 1}{2^{1/x} + 1}$, $f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

Решение. а). Функция $f(x) = \frac{1}{\ln|x|}$ не определена в точках x = 0, x = 1, x = -1. В

точках $x \neq 0$, $x \neq 1$, $x \neq -1$ функция f(x) является суперпозицией элементарных функций, непрерывных на своей области определения; поэтому функция f(x) непрерывна во всех точках, кроме точек x = 0, x = 1, x = -1. Исследуем функцию в точке x = 0. Так как $\lim_{x \to 0} \ln |x| = -\infty$, то $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{\ln |x|} = 0$. Предел функ-

ции при $x \to 0$ существует, но функция f(x) в точке x = 0 не определена, поэтому x = 0 – точка устранимого разрыва 1-го рода. Разрыв можно устранить, если f(x) доопределить, положив f(0) = 0, тогда функция f(x) будет являться непрерывной в точке x = 0.

Исследуем функцию в точках $x=\pm 1$. Так как $\lim_{x\to\pm 1}\ln |x|=0$, то

 $\lim_{x\to\pm 1} f(x) = \lim_{x\to\pm 1} \frac{1}{\ln |x|} = \infty$. Пределы функции при $x\to\pm 1$ бесконечны, следова-

тельно, $x = \pm 1$ — точки разрыва второго рода.

б). Функция $f(x) = \frac{\lg x}{x}$ не определена в точках x = 0 и $x_n = \frac{\pi}{2} + \pi n$ $(n \in \mathbb{Z})$. В других точках функция f(x) является непрерывной как частное двух непрерывных элементарных функций.

Исследуем точку x = 0: по следствию из первого замечательного предела $\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$, но f(0) не существует. Поэтому x = 0 — точка устранимого разрыва.

Исследуем точки $x_n = \frac{\pi}{2} + \pi \, n \quad (n \in Z)$. Так как $\lim_{x \to x_n} \operatorname{tg} x = \infty$, то $\lim_{x \to x_n} \frac{\operatorname{tg} x}{x} = \infty$. Следовательно, $x_n = \frac{\pi}{2} + \pi \, n \quad (n \in Z)$ — точки разрыва 2-го рода.

в). Функция $f(x) = \frac{2^{1/x} - 1}{2^{1/x} + 1}$ при всех $x \neq 0$ непрерывна как частное двух непрерывных функций. В точке x = 0 функция f(x) не определена, следовательно, x = 0 точка разрыва. Исследуем эту точку. Предварительно заметим, что

$$\lim_{x \to 0-0} \frac{1}{x} = -\infty \ , \ \lim_{x \to 0-0} 2^{1/x} = 0 \ ;$$

$$\lim_{x \to 0+0} \frac{1}{x} = +\infty , \quad \lim_{x \to 0+0} 2^{1/x} = +\infty ,$$

следовательно, $\lim_{x\to 0-0} f(x) = \lim_{x\to 0-0} \frac{2^{1/x}-1}{2^{1/x}+1} = \frac{0-1}{0+1} = -1$,

$$\lim_{x \to 0+0} f(x) = \left[\frac{\infty}{\infty} \right] = \lim_{x \to 0+0} \frac{2^{1/x} \left(1 - 2^{-1/x} \right)}{2^{1/x} \left(1 + 2^{-1/x} \right)} = \lim_{x \to 0+0} \frac{1 - 2^{-1/x}}{1 + 2^{-1/x}} = \frac{1 - 0}{1 + 0} = 1.$$

Таким образом, при $x \to 0$ односторонние пределы конечны, но различны, поэтому в точке x = 0 — конечный разрыв 1-го рода (скачок).

г). Функция $f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ при $x \neq 0$ непрерывна как элементарная функция.

Точка x = 0 — точка разрыва 2-го рода, так как $\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x}$ не существует.

3. Производные

3.1. Определение производной и дифференциала

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
 (3.1)

Функция f(x) дифференцируема в точке x тогда и только тогда, когда существует ее производная в этой точке.

Выражение $df(x) = f'(x) \cdot dx$ есть дифференциал функции.

Из дифференцируемости функции следует ее непрерывность. Обратное неверно.

Пример 3.1. Является ли функция f(x) дифференцируемой? непрерывной?

a)
$$f(x) = \begin{cases} x \cdot \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 6) $f(x) = \begin{cases} x+1, & x \leq 0, \\ e^x, & x > 0. \end{cases}$

Решение. Имеет смысл сначала исследовать функцию на дифференцируемость, так как из дифференцируемости следует её на непрерывность.

а). В точках $x \neq 0$ функция f(x) дифференцируема как суперпозиция дифференцируемых функций и, следовательно, непрерывна.

Исследуем точку x = 0. Найдем предел

$$\lim_{\Delta x \to 0} \frac{\Delta f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x \cdot \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x}.$$

Этот предел не существует, следовательно, функция f(x) не является дифференцируемой в точке x=0. Но функция f(x) непрерывна в точке x=0, так как

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \cdot \sin \frac{1}{x} = 0 = f(0).$$

При этом мы учли, что при $x \to 0$ произведение бесконечно малой x на ограниченную функцию $\sin \frac{1}{x}$ является бесконечно малой и имеет предел, равный нулю.

б). Исследуем функцию $f(x) = \begin{cases} x+1, & x \le 0, \\ e^x, & x > 0, \end{cases}$ на дифференцируемость.

В точках x > 0 функция f(x) = x + 1 дифференцируема, так как $\exists f'(x) = 1$;

В точках x < 0 функция $f(x) = e^x$ дифференцируема, так как $\exists f'(x) = e^x$.

Из дифференцируемости функции следует ее непрерывность в этих точках.

Исследуем точку x=0: $f'(-0)=(x+1)'\Big|_{x=0}=1$, $f'(+0)=(e^x)'\Big|_{x=0}=1$. Так как f'(-0)=f'(+0)=1, то f'(0)=1. Следовательно, функция f(x) в точке x=0 дифференцируема, а значит и непрерывна.

3.2. Геометрический смысл производной

Значение производной $f'(x_0)$ равно угловому коэффициенту касательной, проведенной к кривой y = f(x) в точке M_0 с абсциссой x_0 :

$$f'(x_0) = k_{\kappa ac}$$

Уравнение прямой, проходящей через точку $M_{_0}(x_{_0},y_{_0})$, с угловым коэффициентом k имеет вид: $y-y_{_0}=k\left(x-x_{_0}\right)$.

Для записи уравнения касательной или нормали нужно положить в этом уравнении $y_0 = f(x_0)$ и $k_{\kappa ac} = f'(x_0)$ или $k_{hop_M} = -\frac{1}{f'(x_0)}$ соответственно.

Пример 3.2. Какой угол образует с осью абсцисс касательная к кривой $y = \frac{2}{3}x^5 - \frac{1}{9}x^3$, проведенная в точке с абсциссой x = 1.

Решение. Находим производную $y' = \frac{10}{3}x^4 - \frac{1}{3}x^2$; при x = 1 имеем y'(1) = 3, то есть $\lg \alpha = 3$, Откуда $\alpha = \arctan 3 \approx 71^{\circ}34'$.

Пример 3.3. Составить уравнения нормали к линии $y = x^3 + 3x^2 - 5$, параллельной прямой 2x - 6y + 1 = 0.

Решение. Для прямой 2x - 6y + 1 = 0 имеем: $y = \frac{1}{3}x + \frac{1}{6}$, угловой коэффициент $k = \frac{1}{3}$.

Для нормали $k = -\frac{1}{y'(x_0)}$. Так как искомая нормаль параллельна данной прямой,

то их угловые коэффициенты совпадают. Поэтому:

$$k = -\frac{1}{y'(x_0)} = \frac{1}{3} \implies y'(x_0) = -3 \implies 3x_0^2 + 6x_0 = -3 \implies 3x_0^2 + 6x_0 + 3 = 0 \implies 3(x_0 + 1)^2 = 0, \ x_0 = -1.$$

Подставляя $k = \frac{1}{3}$, $x_0 = -1$, $y_0 = y(-1) = (-1)^3 + 3(-1)^2 - 5 = -3$ в уравнение нормали

$$y-y_0=k(x-x_0)$$
, получим: $y+3=\frac{1}{3}(x+1)$ или $y=\frac{1}{3}x-\frac{8}{3}$.

Пример 3.4. Найти угол между параболами $y = 8 - x^2$, $y = x^2$.

Решение. Решив систему $\begin{cases} y = 8 - x^2 \\ y = x^2 \end{cases}$, найдем точки пересечения парабол:

A(2;4), B(-2;4). Продифференцируем обе части каждого из уравнений парабол: y' = -2x, y' = 2x. Найдем угловые коэффициенты касательных к параболам в точке A (то есть значения производных при x = 2): $k_1 = -4$, $k_2 = 4$.

Теперь найдем угол φ_1 между параболами, то есть между их касательными в точке A:

$$\operatorname{tg} \varphi_1 = \frac{k_2 - k_1}{1 + k_1 \cdot k_2} = \frac{4 + 4}{1 - 16} = -\frac{8}{15}, \quad \varphi_1 = \operatorname{arctg} \left(-\frac{8}{15} \right).$$

Аналогично, найдем угол φ_2 между касательными в точке B: $\varphi_2 = \arctan\left(\frac{8}{15}\right)$.

3.3. Дифференцирование по формулам

При изучении этой темы следует использовать таблицу производных и правила дифференцирования.

Правила дифференцирования

$$1. \ (u \pm v)' = u' \pm v' \,,$$

$$2. \ (uv)' = u'v + uv' \,, \qquad \text{в частности,} \quad (c \cdot u)' = c \cdot u' \,, \quad \text{где } c - \text{число,}$$

$$3. \ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \,, \qquad \text{в частности,} \quad \left(\frac{c}{v}\right)' = \frac{-c \cdot v'}{v^2} \,, \quad \text{где } c - \text{число,}$$

$$4. \ y'_x = y'_u \cdot u'_x \,, \qquad \text{где } y = y(u) \,, \quad u = u(x) \,,$$

$$5. \ y'_x = \frac{1}{x'_y} \qquad (x'_y \neq 0) \,.$$

Формулы дифференцирования

1.
$$(x^a)' = a \cdot x^{a-1}$$
, В частности, $(\frac{1}{x})' = \frac{-1}{x^2}$, $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$; 2. $(a^x)' = a^x \ln a$, В частности, $(e^x)' = e^x$; 3. $(\log_a x)' = \frac{1}{x \ln a}$, В частности, $(\ln x)' = \frac{1}{x}$; 4. $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$; 5. $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$, $(\operatorname{ctg} x)' = \frac{-1}{\sin^2 x}$; 6. $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1-x^2}}$, $(\operatorname{arccos} x)' = \frac{-1}{\sqrt{1-x^2}}$; 7. $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$, $(\operatorname{arcctg} x)' = \frac{-1}{1+x^2}$; 8. $(\operatorname{sh} x)' = \operatorname{ch} x$, $(\operatorname{ch} x)' = \operatorname{sh} x$; 9. $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$, $(\operatorname{cth} x)' = \frac{-1}{\operatorname{sh}^2 x}$.

Пример 3.5. Применяя формулы и правила дифференцирования, найти про-изводные следующих функций:

Решение. а). Воспользуемся формулой (uv)' = u'v + v'u, из которой следует, что

$$y' = (x^2 e^x)' = (x^2)' e^x + (e^x)' x^2 = 2x e^x + x^2 e^x$$
.

б). Воспользуемся формулой $\left(\frac{u}{v}\right)' = \frac{u'v - v'u'}{v^2}$, тогда

$$y' = \left(\frac{\arcsin x}{x}\right)' = \frac{x \cdot \left(\arcsin x\right)' - \arcsin x \cdot (x)'}{x^2} = \frac{x \cdot \frac{1}{\sqrt{1 - x^2}} - \arcsin x}{x^2} = \frac{x - \sqrt{1 - x^2} \arcsin x}{x^2 \sqrt{1 - x^2}}$$

B).
$$y' = (5\cos x + x^2 + \ln x)' = 5 \cdot (\cos x)' + (x^2)' + (\ln x)' = -5\sin x + 2x + \frac{1}{x}$$
.

Пример 3.6. Найти производную сложной функции:

Решение. По правилу дифференцирования сложной функции, если y = y(u), u = u(x), то $y_x' = y_u' \cdot u_x'$.

а). Обозначим $2x^3 + 5 = u$, тогда $y = u^4$. Таким образом, имеем: $v' = (u^4)' \cdot (2x^3 + 5)' \cdot = 4u^3 \cdot (6x^2) = 24x^2(2x^3 + 5)^3$.

б). Для функции
$$y = \lg^6 x$$
 имеем: $y' = 6 \cdot \lg^5 x \cdot (\lg x)' = 6 \lg^5 x \cdot \frac{1}{\cos^2 x}$.

в). Для функции $y = \ln \operatorname{tg} \frac{x}{2}$ имеем:

$$y' = \frac{1}{\lg \frac{x}{2}} \cdot \left(\lg \frac{x}{2}\right)' = \frac{1}{\lg \frac{x}{2}} \cdot \frac{1}{\cos^2 \frac{x}{2}} \cdot \left(\frac{x}{2}\right)' = \frac{1}{\sin \frac{x}{2} \cos \frac{x}{2}} \cdot \frac{1}{2} = \frac{1}{\sin x}.$$

Пример 3.7. Найти $y^{(n)}$, если a) $y = \ln x$, б) $y = 2^x$.

Решение. а). Для функции $y = \ln x$ имеем:

$$y' = \frac{1}{x}, \quad y'' = -1 \cdot x^{-2}, \quad y''' = -1 \cdot (-2) x^{-3}, \quad y^{(4)} = (-1)(-2)(-3) x^{-4}, \dots,$$
$$y^{(n)} = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1)(-1)^{n-1} x^{-n} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}.$$

б). Для функции $y = 2^x$ имеем:

$$y' = 2^x \cdot \ln 2$$
, $y'' = 2^x \cdot \ln^2 2$, $y''' = 2^x \cdot \ln^3 2$,..., $y^{(n)} = 2^x \cdot \ln^n 2$.

3.4. Логарифмическое дифференцирование

В ряде случаев для нахождения производной функции y = f(x) удобно это равенство сначала прологарифмировать, а затем продифференцировать. Такой прием называют логарифмическим дифференцированием. Его полезно применять для дифференцирования произведения многих сомножителей, или для дифференцирования частного, числитель и знаменатель которого содержит несколько множителей, или для дифференцирования степенно-показательных функций $u(x)^{v(x)}$.

Пример 3.8. Найти производную $y = (\sin x)^{\lg x}$.

Решение. Здесь основание и показатель степени зависят от x. Логарифмируя, получим $\ln y = \operatorname{tg} x \cdot \ln (\sin x)$. Продифференцируем обе части последнего равенства по x: $(\ln y)_x' = (\operatorname{tg} x)' \cdot \ln (\sin x) + \operatorname{tg} x \cdot (\ln (\sin x))'$,

$$\frac{1}{y} \cdot y_x' = \frac{1}{\cos^2 x} \ln \sin x + \operatorname{tg} x \cdot \frac{1}{\sin x} \cdot \cos x,$$
$$y_x' = y \left(\frac{\ln \sin x}{\cos^2 x} + 1 \right) = (\sin x)^{\operatorname{tg} x} \cdot \left(\frac{\ln \sin x}{\cos^2 x} + 1 \right).$$

Пример 3.9. Найти производную функции $y = \sqrt{x \sin x} \sqrt{1 - e^x}$.

Решение. Находить *y'* как производную произведения слишком громоздко. Удобнее применить логарифмическое дифференцирование:

$$\ln y = \ln \sqrt{x \sin x} \sqrt{1 - e^x} = \ln \sqrt{x} + \ln \sqrt{\sin x} + \ln \sqrt[4]{1 - e^x},$$

$$\ln y = \frac{1}{2} \ln x + \frac{1}{2} \ln \sin x + \frac{1}{4} \ln(1 - e^x).$$

Продифференцируем последнее равенство по x:

$$\frac{1}{y} \cdot y' = \frac{1}{2x} + \frac{1}{2} \cdot \frac{1}{\sin x} \cdot \cos x + \frac{1}{4} \cdot \frac{1}{(1 - e^x)} \cdot (-e^x).$$

$$y' = \sqrt{x \sin x} \sqrt{1 - e^x} \cdot \left(\frac{1}{2x} + \frac{\cos x}{2 \sin x} - \frac{e^x}{4(1 - e^x)} \right).$$

Выразим у':

3.5. Дифференцирование параметрически заданных функций

Пусть функция задана параметрически уравнениями $x=x(t),\,y=y(t)$. Если существуют y'(t) и $x'(t)\neq 0$, тогда существует y'_x , причем

$$y'_{x} = \frac{y'_{t}}{x'_{t}}, \quad y''_{xx} = \frac{(y'_{x})'_{t}}{x'_{t}}.$$

Пример 3.10. Найти y'_x и y''_{xx} для функции, заданной параметрическими уравнениями: $x = \ln t$, $y = t^2 - 1$.

Pewerue.
$$y'_x = \frac{y'_t}{x'_t} = \frac{2t}{1/t} = 2t^2$$
, $y''_{xx} = \frac{\left(2t^2\right)'_t}{x'_t} = \frac{4t}{1/t} = 4t^2$.

Пример 3.11. Составить уравнение нормали в точке $M_0\!\left(\frac{3\sqrt{2}}{2};2\sqrt{2}\right)$ к линии

y = y(x), заданной параметрическими уравнениями: $x = 3\cos t$, $y = 4\sin t$.

Решение. Найдем
$$y'_x$$
: $y'_x = \frac{y'_t}{x'_t} = \frac{4\cos t}{-3\sin t} = -\frac{4}{3}\operatorname{ctg} t$.

Найдем значение параметра t_0 , соответствующее точке M_0 , из уравнений:

$$\begin{cases} \frac{3\sqrt{2}}{2} = 3\cos t_0 \\ 2\sqrt{2} = 4\sin t_0 \end{cases}, \quad \begin{cases} \cos t_0 = \frac{\sqrt{2}}{2} \\ \sin t_0 = \frac{\sqrt{2}}{2} \end{cases}. \quad \text{Отсюда} \quad t_0 = \frac{\pi}{4} \;\; \text{и} \quad k_{\kappa ac} = y_x'(t_0) = -\frac{4}{3}\operatorname{ctg}\frac{\pi}{4} = -\frac{4}{3} \;. \end{cases}$$

Уравнение нормали: $y-y_0=\frac{-1}{k_{\kappa ac.}}(x-x_0)$ или $y-2\sqrt{2}=\frac{3}{4}\left(x-\frac{3\sqrt{2}}{2}\right)$, или $6x-8y=-7\sqrt{2}$.

3.6. Правило Лопиталя

Пусть в выколотой окрестности точки a функции f(x), g(x) — дифференцируемы, $g'(x) \neq 0$ и существует конечный или бесконечный $\lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Тогда, в случае неопределенности $\left[\frac{0}{0}\right]$ или $\left[\frac{\infty}{\infty}\right]$, справедливо правило Лопиталя:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Пример 3.13. Вычислить пределы, используя правило Лопиталя:

Pemerue. a).
$$\lim_{x \to 0} \frac{\ln \cos x}{x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(\ln \cos x)'}{x'} = \lim_{x \to 0} \frac{\frac{1}{\cos x} \cdot (-\sin x)}{1} = 0.$$

б). Имеем неопределенность $\left[\frac{0}{0}\right]$. Применение правила Лопиталя приведет к громоздким выкладкам. Заметим, что к нулю стремятся только первые множители в числителе и знаменателе. Воспользуемся этим:

$$\lim_{x \to 0} \frac{\left(e^x - e^{-x} - 2x\right) \cdot \cos^3 x}{\left(x - \sin x\right) \cdot \sqrt{1 + x^5}} = \lim_{x \to 0} \frac{\left(e^x - e^{-x} - 2x\right)}{\left(x - \sin x\right)} \cdot \lim_{x \to 0} \frac{\cos^3 x}{\sqrt{1 + x^5}} = \lim_{x \to 0} \frac{\left(e^x - e^{-x} - 2x\right)}{\left(x - \sin x\right)}.$$

После такого упрощения применим правило Лопиталя:

$$\lim_{x \to 0} \frac{\left(e^x - e^{-x} - 2x\right)}{\left(x - \sin x\right)} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{\left(e^x - e^{-x} - 2x\right)'}{\left(x - \sin x\right)'} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{\left(e^x + e^{-x} - 2\right)'}{(1 - \cos x)'} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{\left(e^x - e^{-x}\right)'}{\left(\sin x\right)'} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = 2.$$

Здесь пришлось применить правило Лопиталя три раза.

Для раскрытия неопределенностей вида $[0\cdot\infty], [\infty-\infty], [1^\infty], [\infty^0]$ их сводят к неопределенностям вида $\left[\frac{0}{0}\right]$ или $\left[\frac{\infty}{\infty}\right]$ и затем применяют правило Лопиталя.

Пример 3.14. Вычислить пределы, используя правило Лопиталя:

a)
$$\lim_{x \to +\infty} [(\pi - 2 \operatorname{arctg} x) \cdot x];$$
 6) $\lim_{x \to 1} \left[\frac{x}{x - 1} - \frac{1}{\ln x} \right];$

Pewerue. a).
$$\lim_{x \to +\infty} [(\pi - 2 \operatorname{arctg} x) \cdot x] = [0 \cdot \infty] = \lim_{x \to +\infty} \frac{\pi - 2 \operatorname{arctg} x}{1/x} = \left[\frac{0}{0}\right] = 1$$

$$= \lim_{x \to +\infty} \frac{(\pi - 2 \arctan x)'}{(1/x)'} = \lim_{x \to +\infty} \frac{-2/(1+x^2)}{-1/x^2} = 2 \lim_{x \to +\infty} \frac{x^2}{1+x^2} = 2.$$

б). Имеем неопределенность $[\infty - \infty]$, поэтому правило Лопиталя неприменимо. Преобразуем функцию, приводя к общему знаменателю; получим неопределенность $\left\lceil \frac{0}{0} \right\rceil$ и применим правило Лопиталя:

$$\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right] = [\infty - \infty] = \lim_{x \to 1} \left[\frac{x \ln x - x + 1}{(x-1) \cdot \ln x} \right] = \left[\frac{0}{0} \right] = \lim_{x \to 1} \frac{(x \ln x - x + 1)'}{((x-1) \cdot \ln x)'} =$$

$$= \lim_{x \to 1} \frac{\ln x + x \cdot (1/x) - 1}{\ln x + (x-1)/x} = \lim_{x \to 1} \frac{\ln x}{\ln x + 1 - 1/x} = \left[\frac{0}{0} \right] = \lim_{x \to 1} \frac{(\ln x)'}{(\ln x + 1 - 1/x)'} = \lim_{x \to 1} \frac{1/x}{(1/x + 1/x^2)} = \frac{1}{2}.$$

В данном примере пришлось применить правило Лопиталя два раза.

Пример 3.15. Вычислить предел $\lim_{x\to\infty}\frac{x+\sin x}{x}$

Решение. Имеем неопределенность $\left[\frac{\infty}{\infty}\right]$. Вычислим $\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=\lim_{x\to\infty}\frac{1+\cos x}{1}$.

Выберем две последовательности:

$$x_n = \frac{\pi}{2} + 2\pi n \to \infty$$
 при $n \to \infty$, $\lim_{n \to \infty} (1 + \cos x_n) = 1$; $x'_n = \pi + 2\pi n \to \infty$ при $n \to \infty$, $\lim_{n \to \infty} (1 + \cos x'_n) = 0$.

Значит, $\lim_{x\to\infty} (1+\cos x)$ не существует. Таким образом, для вычисления искомого предела правило Лопиталя неприменимо. Вычислим предел другим способом:

$$\lim_{x \to \infty} \frac{x + \sin x}{x} = \lim_{x \to \infty} \left(1 + \frac{1}{x} \cdot \sin x \right) = 1.$$

Мы воспользовались тем, что произведение бесконечно малой при $x \to \infty$ функции $\frac{1}{x}$ на ограниченную функцию $\sin x$ есть бесконечно малая функция и, значит, $\lim_{x \to \infty} \frac{1}{x} \cdot \sin x = 0$.

Пример 3.16. Вычислить предел $\lim_{x\to 1} (2-x)^{\operatorname{tg} \frac{\pi x}{2}}$.

Решение. Имеем неопределенность $[1^{\infty}]$. Воспользуемся основным логариф-мическим тождеством $\lim_{x\to 1} (2-x)^{tg\frac{\pi x}{2}} = \lim_{x\to 1} e^{tg\frac{\pi x}{2} \cdot \ln(2-x)}$. Вычислим предел показа-

теля степени, применяя правило Лопиталя: $\lim_{x\to 1} \operatorname{tg} \frac{\pi x}{2} \cdot \ln(2-x) = [0\cdot\infty] =$

$$= \lim_{x \to 1} \frac{\ln(2-x)}{\operatorname{ctg}(\pi x/2)} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{\left(\ln(2-x)\right)'}{\left(\operatorname{ctg}(\pi x/2)\right)'} = \lim_{x \to 1} \frac{-1/(2-x)}{-1/\sin^2(\pi x/2) \cdot (\pi/2)} = \frac{2}{\pi}.$$

Поэтому искомый предел равен $e^{2/\pi}$.

3.7. Формула Тейлора

Пусть f(x) непрерывна и имеет непрерывные производные до n-го порядка включительно в окрестности точки x_0 . Тогда справедлива формула Тейлора n-го порядка

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

Остаточный член формулы Тейлора может быть записан в форме Пеано: $R_n(x) = o((x-x_0)^n)$, где функция $o((x-x_0)^n)$ — бесконечно малая функция более высокого порядка, чем $(x-x_0)^n$.

Если в окрестности точки x_0 существует $f^{(n+1)}(x)$, то остаточный член может быть записан в форме Лагранжа: $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$, где c- некоторая точка, лежащая между x и x_0 .

Пример 3.17. Разложить функцию $f(x) = x^3 - 2x^2 + 3x + 5$ по степеням (x-2).

Решение.
$$f'(x) = 3x^2 - 4x + 3$$
; $f''(x) = 6x - 4$; $f'''(x) = 6$; $f^{(4)}(x) = 0$. Отсюда $f(2) = 11$; $f'(2) = 7$; $f''(2) = 8$; $f'''(2) = 6$; $f^{(4)}(2) = 0$.

Следовательно, по формуле Тейлора третьего порядка

$$x^3 - 2x^2 + 3x + 5 = 11 + 7(x - 2) + \frac{8}{2!}(x - 2)^2 + \frac{6}{3!}(x - 2)^3 + R_3(x)$$

Остаточный член $R_3(x) = \frac{f^{(4)}(c)}{4!}(x-2)^4 = 0$. Таким образом,

$$x^3 - 2x^2 + 3x + 5 = 11 + 7(x - 2) + 4(x - 2)^2 + (x - 2)^3$$
.

Пример 3.18. Вычислить $\frac{1}{\sqrt[4]{e}}$ с точностью до 0,01.

Решение. Используем разложение

$$f(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + R_n(x)$$
 при $x = -\frac{1}{4}$.

Запишем остаточный член в форме Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot x^{n+1} = \frac{e^c \cdot x^{n+1}}{(n+1)!}.$$

При x = -1/4 получаем: $R_n\left(-1/4\right) = \frac{e^c \cdot \left(-1/4\right)^{n+1}}{(n+1)!}$, где $c \in \left(-1/4, 0\right)$. Тогда

 $|R_n(-1/4)| < \frac{e^0}{4^{n+1} \cdot (n+1)!}$. Подставив в это неравенство n = 1, n = 2, ..., получим

$$\left| R_1 \right| < \frac{1}{4^2 \cdot 2!} = \frac{1}{32}; \quad \left| R_2 \right| < \frac{1}{4^3 \cdot 3!} = \frac{1}{384} < 0.01.$$

Таким образом, для заданной точности достаточно трех слагаемых

$$\frac{1}{\sqrt[4]{e}} \approx 1 - \frac{1}{4} + \frac{\left(-\frac{1}{4}\right)^2}{2!} = \frac{25}{32} \approx 0,78.$$

Пример 3.19. Вычислить
$$\lim_{x\to 0} \frac{\sin x - x \cdot \sqrt[3]{1-x^2}}{x^3}$$
.

Решение. Так как знаменатель равен x^3 , то достаточно найти разложение числителя до $o(x^3)$. Поэтому для первого слагаемого воспользуемся разложением

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + o\left(x^{2k}\right); \text{ при } k = 1 \text{ имеем } \sin x = x - \frac{x^3}{6} + o\left(x^3\right).$$

Для второго слагаемого воспользуемся разложением

$$(1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha (\alpha - 1) \dots (\alpha - (n-1))}{n!} x^n + o(x^n).$$

Положим n = 1, $\alpha = 1/3$, заменим x на $(-x^2)$ и учтем, что $x \cdot o(x^2) = o(x^3)$. Тогда

$$x \cdot \sqrt[3]{1 - x^2} = x \cdot \left(1 - x^2\right)^{1/3} = x \cdot \left(1 - \frac{1}{3}x^2 + o\left(x^2\right)\right) = x - \frac{1}{3}x^3 + o\left(x^3\right).$$

Тогда
$$\sin x - x \cdot \sqrt[3]{1 - x^2} = \left(x - \frac{1}{6}x^3 + o\left(x^3\right)\right) - \left(x - \frac{1}{3}x^3 + o\left(x^3\right)\right) = \frac{1}{2}x^3 + o\left(x^3\right),$$

$$\frac{\sin x - x \cdot \sqrt[3]{1 - x^2}}{x^3} = \frac{1}{2} + \frac{o(x^3)}{x^3}, \qquad \lim_{x \to 0} \frac{\sin x - x \cdot \sqrt[3]{1 - x^2}}{x^3} = \frac{1}{2}.$$

Здесь мы учли, что $\lim_{x\to 0} \frac{o\left(x^3\right)}{x^3} = 0$, так как $o\left(x^3\right)$ есть бесконечно малая более высокого порядка, чем x^3 .

4. Исследование функций. Построение графиков

При построении графика функции можно использовать следующую схему:

- 1) найти область определения функции;
- 2) проверить функцию на четность, нечетность, периодичность;
- 3) найти асимптоты графика функции;
- 4) исследовать функцию на монотонность и экстремум;
- 5) исследовать график функции на выпуклость, вогнутость; найти точки перегиба;
- 6) найти (если возможно) точки пересечения с осями координат.

Не всегда нужно точно следовать этой схеме. Отметим следующие случаи:

- а) часто для построения графика функции достаточно пунктов 1-4 (краткая схема);
- б) если функция определена при $x \ge 0$, то не надо проверять ее четность;
- в) если функция определена на конечном интервале, то не надо искать ее невертикальные асимптоты;
- г) если функция четная (или нечетная), то достаточно исследование провести для $x \ge 0$, а при построении графика функции учесть, что он симметричен относительно оси *Оу* для четной функции (относительно начала координат для нечетной функции);
- д) если функция периодическая, то достаточно исследование провести на промежутке с длиной, равной периоду.

Пример 4.1. Исследовать функцию
$$y = \frac{x^3 + 4}{x^2}$$
 и построить её график.

Решение.

- 1. Область определения функции вся числовая ось Ox, за исключением точки x = 0, то есть $D(y) = (-\infty; 0) \cup (0; +\infty)$.
 - 2. Функция не является четной или нечетной

$$y(-x) = \frac{-x^3 + 4}{x^2}$$
; $y(-x) \neq y(x)$; $y(-x) \neq -y(x)$

- 3. Найдем асимптоты.
- а). Точка разрыва x = 0, причем $\lim_{x \to 0} y = \infty$, следовательно, x = 0 (ось Oy) является вертикальной асимптотой графика.
- б). Найдем наклонную асимптоту y = kx + b:

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3 + 4}{x^3} = 1;$$

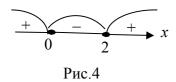
$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^3 + 4}{x^2} - x \right) = \lim_{x \to \infty} \frac{4}{x^2} = 0.$$

Наклонная асимптота имеет уравнение y = x.

4. Найдем экстремумы функции и интервалы возрастания и убывания.

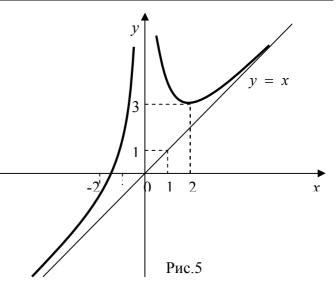
$$y' = \left(x + \frac{4}{x^2}\right)' = 1 - \frac{8}{x^3} = \frac{x^3 - 8}{x^3};$$
 $y' = 0$ при $x = 2;$ $y' = \infty$ при $x = 0.$

Точки x = 0 и x = 2 разбивают область определения функции на промежутки $(-\infty; 0), (0; 2), (2; +\infty)$. Определим знак производной методом интервалов (рис.4), и в зависимости от него возрастание или убывание функции. Результаты исследования представим в виде таблицы.



X	$(-\infty;0)$	0	(0; 2)	2	$(2; +\infty)$
y'	+	∞	_	0	+
У	_	∞	\	3 min	\

- 5. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как $y'' = \frac{24}{x^4} > 0$, то график всюду вогнут. Точек перегиба кривая не имеет.
- 6. Найдем точки пересечения графика с осью Ox: $\frac{x^3+4}{x^2}=0$, $x=-\sqrt[3]{4}$. Используя полученные данные, строим график функции (рис.5).



Пример 4.2. Исследовать функцию $y = \sqrt[3]{1-x^3}$ и построить её график.

Решение.

- 1. $D(y) = (-\infty; +\infty)$
- 2. Функция не является ни четной, ни нечетной.
- 3. Точек разрыва нет и, значит, вертикальных асимптот нет.

Найдем наклонные асимптоты y = kx + b:

$$k = \lim_{x \to \infty} \frac{\sqrt[3]{1 - x^3}}{x} = -1, \qquad b = \lim_{x \to \infty} \left(\sqrt[3]{1 - x^3} + x \right) = \lim_{x \to \infty} \frac{1}{\sqrt[3]{\left(1 - x^3\right)^2 - x \cdot \sqrt[3]{1 - x^3} + x^2}} = 0.$$

Итак, наклонная асимптота y = -x.

4. Исследуем на экстремум и монотонность:

$$y' = -\frac{x^2}{\sqrt[3]{(1-x^3)^2}};$$
 $y' = 0$ при $x = 0$, $y' = \infty$ при $x = 1$.

Знак производной не меняется, экстремумов нет. Так как $y' \le 0$ при всех x, то функция убывает на всей числовой оси.

5. Исследуем на выпуклость:

$$y'' = -\frac{2x}{\sqrt[3]{(1-x^3)^5}};$$
 $y'' = 0$ при $x = 0;$ $y'' = \infty$ при $x = 1$.

Результаты исследования можно представить в виде таблицы.

X	$(-\infty; 0)$	0	(0;1)	1	(1;+∞)
<i>y</i> "	+	0	ı	8	+
y	∪ вогнута	1 точка перегиба	∩ выпукла	0 точка перегиба	∪ вогнута

Точки перегиба имеют координаты (0;1), (1;0).

6. Точки пересечения с осями координат: если x = 0, то y = 1; если y = 0, то x = 1.

Используя полученные данные, строим график (рис.6).

Пример 4.3. Исследовать функцию $y = \sqrt[3]{\left(1-x^2\right)^2}$ и построить её график.

Pewerue. 1. $D(y) = (-\infty; +\infty)$

2. Функция является четной, так как

$$y(-x) = \sqrt[3]{(1-(-x)^2)^2} = \sqrt[3]{(1-x^2)^2} = y(x)$$
.

Поэтому построим график при $x \ge 0$ и отразим его симметрично относительно оси Oy. Исследование функции также проведем только для $x \ge 0$.

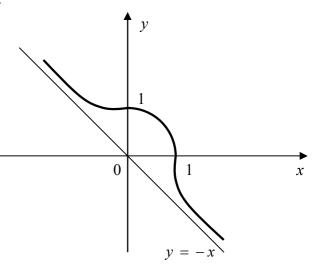


Рис.6

3. Точек разрыва и вертикальных асимптот нет. Найдем наклонную асимптоту y = kx + b:

$$k = \lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{\sqrt[3]{(1-x^2)^2}}{x} = \lim_{x \to \infty} \frac{x^{4/3}}{x} = \infty$$
, значит, наклонной асимптоты нет.

4. Исследуем функцию на монотонность и экстремумы.

$$y' = \frac{2}{3} \cdot \frac{1}{\sqrt[3]{1-x^2}} \cdot (-2x) = -\frac{4x}{3\sqrt[3]{1-x^2}};$$
 $y' = 0$, если $x = 0$; $y' = \infty$, если $x = 1$.

x	0	(0;1)	1	(1;+∞)
y'	0	1	8	+
y	1	*	0 min	→

5. Исследуем выпуклость графика. Найдем вторую производную

$$y'' = -\frac{4}{3} \cdot \frac{\sqrt[3]{1-x^2} - \frac{1}{3}(1-x^2)^{-2/3}(-2x)x}{\sqrt[3]{(1-x^2)^2}} = -\frac{4}{3} \cdot \frac{1-x^2+2x^2/3}{\sqrt[3]{(1-x^2)^4}} = -\frac{4}{9} \cdot \frac{3-x^2}{\sqrt[3]{(1-x^2)^4}};$$

y'' = 0, если $x = \sqrt{3}$, $y'' = \infty$, если x = 1. Определим знаки второй производной, в зависимости от них — характер выпуклости; результаты поместим в таблицу.

х	0	(0;1)	1	$(1;\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3};\infty)$
<i>y</i> "	-4/3		8	_	0	+
у	1	∩ выпукла	0	∩ выпукла	³ √4 точка перегиба	 вогнута

Точка $(\sqrt{3};\sqrt[3]{4})$ – точка перегиба

6. Точки пересечения с осями координат: если x = 0, то y = 1;

если
$$y = 0$$
, то $x = \pm 1$.

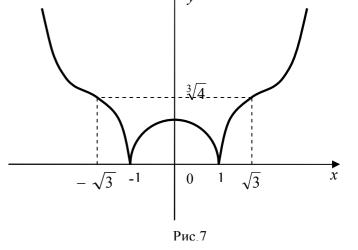
Строим график (рис.7).

Пример 4.4. Исследовать функцию $y = e^x \cdot (x+2)$ и построить её график.

Pewerue. 1. $D(y) = (-\infty; +\infty)$

- 2. Функция не является четной и не является нечетной.
- 3. Точек разрыва нет, следовательно, вертикальных асимптот нет.

Найдем наклонную асимптоту y = kx + b:



$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{e^x \cdot (x+2)}{x} = \lim_{x \to \infty} e^x \cdot \left(1 + \frac{2}{x}\right) = \begin{bmatrix} 0, & x \to -\infty \\ \infty, & x \to +\infty. \end{bmatrix}$$

Следовательно, график функции не имеет асимптоты при $x \to +\infty$. Найдем b только при $x \to -\infty$:

$$b = \lim_{x \to -\infty} (f(x) - kx) = \lim_{x \to -\infty} e^x \cdot (x+2) = \left[0 \cdot \infty\right] = \lim_{x \to -\infty} \frac{x+2}{e^{-x}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to -\infty} \frac{(x+2)'}{(e^{-x})'} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = 0.$$

Таким образом, y = 0 – горизонтальная асимптота при $x \to -\infty$.

4. Исследуем функцию на монотонность и экстремумы:

$$y' = e^x(x+2) + e^x = e^x(x+3);$$
 $y' = 0$, если $x = -3$.

x	(-∞;-3)	-3	(-3;+∞)
y'	_	0	+
у	*	$-e^{-3}$ min	

5. Исследуем выпуклость графика: $y'' = e^x(x+4)$; y'' = 0, если x = -4.

x	(-∞;-4)	-4	(-4;+∞)
<i>y"</i>		0	+
У	∩ выпукла	$-2e^{-4}$ точка перегиба	вогнута

6. Точки пересечения с осями координат: (0; 2), (-2; 0).

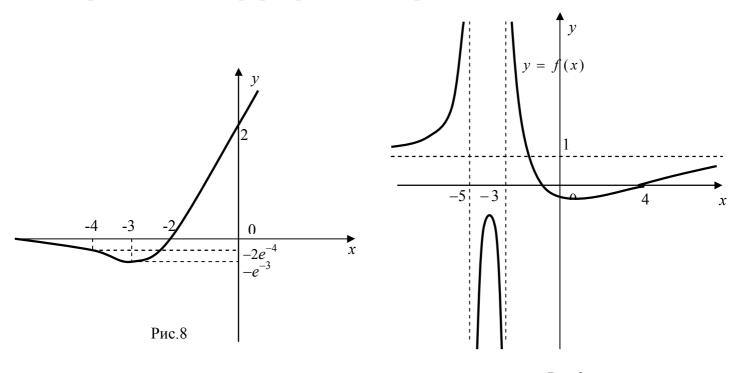
Строим график функции (рис.8).

Пример 4.5. Построить с минимальным использованием математического аппарата эскиз графика функции $f(x) = \frac{x^2 - 3x - 4}{(x+5) \cdot (x+3)}$.

1). Функция
$$f(x) = \frac{x^2 - 3x - 4}{(x+5)\cdot(x+3)} = \frac{(x+1)\cdot(x-4)}{(x+5)\cdot(x+3)}$$
 неопределена при $x = -5$, $x = -3$.

Прямые x = -5, x = -3 являются вертикальными асимптотами.

- 2). Точки x = -1, x = 4 нули функции. Перемена знака происходит при переходе через точки x = -5, x = -3, x = -1, x = 4.
- 3). Так как $\lim_{x\to\infty} f(x)=1$, то прямая y=1 является горизонтальной асимптотой графика функции f(x) при $x\to\infty$.
- 4). Найдем ординату точки пересечения графика с осью Oy: f(0) = -4/15. Построим схематично график функции f(x) (рис.9).



5. Неопределенный интеграл

Функция F(x) — некоторая первообразная для функции f(x), если F'(x) = f(x). Множество всех первообразных F(x) + C функции f(x) называется неопределенным интегралом этой функции и обозначается $\int f(x) dx$:

$$\int f(x) dx = F(x) + C \qquad , \tag{5.1}$$

Для вычисления неопределенных интегралов прежде всего следует знать свойства неопределенных интегралов и таблицу интегралов.

5.1. Таблица основных интегралов

1.
$$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C, \quad (\alpha \neq -1); \quad \int du = u + C, \quad \int \frac{du}{\sqrt{u}} = 2\sqrt{u} .$$
2.
$$\int \frac{du}{u} = \ln|u| + C.$$
3.
$$\int a^{u} du = \frac{a^{u}}{\ln a} + C, \quad (a > 0, \quad a \neq 1), \quad \int e^{u} du = e^{u} + C. .$$
4.
$$\int \sin u du = -\cos u + C, \quad \int \sinh u du = \cosh u + C.$$
5.
$$\int \cos u du = \sin u + C, \quad \int \cosh u du = \sinh u + C$$
6.
$$\int \frac{du}{\cos^{2} u} = \operatorname{tg} u + C.$$
7.
$$\int \frac{du}{\sin^{2} u} = -\operatorname{ctg} u + C.$$
8.
$$\int \frac{du}{\sin u} = \ln\left|\operatorname{tg}\left(\frac{u}{2}\right) + C = \ln\left|\frac{1}{\sin u} - \operatorname{ctg} u\right| + C.$$
9.
$$\int \frac{du}{\cos u} = \ln\left|\operatorname{tg}\left(\frac{\pi}{4} + \frac{u}{2}\right)\right| + C = \ln\left|\frac{1}{\cos u} + \operatorname{tg} u\right| + C.$$
10.
$$\int \frac{du}{u^{2} + a^{2}} = \frac{1}{a} \operatorname{arctg} \frac{u}{u} + C, \quad (a \neq 0).$$
11.
$$\int \frac{du}{u^{2} - a^{2}} = \frac{1}{2a} \ln\left|\frac{u - a}{u + a}\right| + C, \quad (a \neq 0).$$
12.
$$\int \frac{du}{\sqrt{a^{2} - u^{2}}} = \arcsin \frac{u}{a} + C, \quad (a \neq 0).$$
13.
$$\int \frac{du}{\sqrt{u^{2} \pm a^{2}}} = \ln\left|u + \sqrt{u^{2} \pm a^{2}}\right| + C.$$

Рассмотрим отыскание неопределенного интеграла с помощью свойств интегралов, таблицы интегралов и алгебраических преобразований.

Пример 5.1. Найти интегралы
$$1) \int (3-x^2)^2 dx$$
; $2) \int \frac{x^2+x^{-2}}{x^3} dx$; $3) \int \frac{x^2}{1+x^2} dx$.

Pewerue. 1)
$$\int (3-x^2)^2 dx = \int (9-6x^2+x^4) dx = 9x - \frac{6x^3}{3} + \frac{x^5}{5} + C = 9x - 2x^3 + \frac{x^5}{5} + C$$
;

2)
$$\int \frac{x^2 + x^{-2}}{x^3} dx = \int \left(\frac{1}{x} + x^{-5}\right) dx = \ln|x| + \frac{x^{-4}}{-4} + C = \ln|x| - \frac{1}{4x^4} + C;$$

3)
$$\int \frac{x^2}{1+x^2} dx = \int \frac{x^2+1-1}{1+x^2} dx = \int \left(1-\frac{1}{1+x^2}\right) dx = x - \arctan x + C$$
;

Примеры для самостоятельного решения

Найти интегралы: 1. $\int \frac{du}{\sqrt{4-u^2}}$, 2. $\int \frac{dx}{\sqrt{x^2-4}}$, 3. $\int \frac{dt}{3\sin t}$, 4. $\int (2^x-3^x)dx$.

Ответы. 1. $\arcsin \frac{u}{2} + C$, 2. $\ln \left| x + \sqrt{x^2 - 4} \right| + C$, 3. $\frac{1}{3} \ln \left| \operatorname{tg} \frac{t}{2} \right| + C$, 4. $\frac{2^x}{\ln 2} - \frac{3^x}{\ln 3} + C$.

5.2. Метод подведения под знак дифференциала

Способ основан на применении свойств дифференциалов:

$$d\varphi(x) = \varphi'(x)dx; \quad d\varphi(x) = d(\varphi(x) + C); \quad d\varphi(x) = \frac{1}{C}d(C \cdot \varphi(x)).$$

Пример 5.2. Найти интегралы

1)
$$\int \frac{dx}{\sqrt{1-3x}}$$
; 2) $\int \frac{x \cdot dx}{\sqrt[5]{1+x^2}}$; 3) $\int \frac{\lg x}{\cos^2 x} dx$; 4) $\int \frac{\sqrt{4-\ln x}}{x} dx$; 5) $\int \frac{2^x}{4^x-1} dx$;

6)
$$\int \frac{\cos\sqrt{x}+1}{\sqrt{x}} dx$$
; 7) $\int \frac{(\arctan x+4)^2}{1+x^2} dx$; 8) $\int \frac{\sin x \cdot \cos x \cdot dx}{\sqrt{\cos^2 x+3}}$; 9) $\int \frac{2x+3}{\sqrt{1-x^2}} dx$.

Решение:

$$1)\int \frac{dx}{\sqrt{1-3x}} = -\frac{1}{3}\int \frac{d(-3x)}{\sqrt{1-3x}} = -\frac{1}{3}\int (1-3x)^{-\frac{1}{2}}d(1-3x) = -\frac{1}{3}\cdot \frac{(1-3x)^{1/2}}{1/2} + C = -\frac{2}{3}\sqrt{1-3x} + C;$$

2)
$$\int \frac{x \cdot dx}{\sqrt[5]{1+x^2}} = \frac{1}{2} \int \frac{d(x^2)}{\sqrt[5]{1+x^2}} = \frac{1}{2} \int \frac{d(1+x^2)}{\sqrt[5]{1+x^2}} = \frac{1}{2} \cdot \frac{\left(1+x^2\right)^{4/5}}{4/5} + C = \frac{5}{8} \sqrt[5]{\left(1+x^2\right)^4} + C;$$

3)
$$\int \frac{\operatorname{tg} x}{\cos^2 x} dx = \int \operatorname{tg} x \cdot \frac{dx}{\cos^2 x} = \int \operatorname{tg} x \cdot d(\operatorname{tg} x) = \frac{\operatorname{tg}^2 x}{2} + C;$$

4)
$$\int \frac{\sqrt{4-\ln x}}{x} dx = \int \sqrt{4-\ln x} \cdot d(\ln x) = -\int (4-\ln x)^{1/2} d(4-\ln x) = -\frac{2}{3} (4-\ln x)^{3/2} + C;$$

5)
$$\int \frac{2^x}{4^x - 1} dx = \frac{1}{\ln 2} \int \frac{2^x \ln 2}{2^{2x} - 1} dx = \frac{1}{\ln 2} \int \frac{d(2^x)}{2^{2x} - 1} = \frac{1}{2 \ln 2} \cdot \ln \left| \frac{2^x - 1}{2^x + 1} \right| + C;$$

6)
$$\int \frac{\cos\sqrt{x+1}}{\sqrt{x}} dx = 2\int \frac{\cos\sqrt{x+1}}{2\sqrt{x}} dx = 2\int \left(\cos\sqrt{x+1}\right) d(\sqrt{x}) = 2\left(\sin\sqrt{x} + \sqrt{x}\right) + C;$$

7)
$$\int \frac{(\arctan x + 4)^2}{1 + x^2} dx = \int (\arctan x + 4)^2 d(\arctan x) = \frac{(\arctan x + 4)^3}{3} + C$$
;

8)
$$\int \frac{\sin x \cdot \cos x \cdot dx}{\sqrt{\cos^2 x + 3}} = -\int \frac{\cos x \cdot d(\cos x)}{\sqrt{\cos^2 x + 3}} = -\frac{1}{2} \int \frac{d(\cos^2 x + 3)}{\sqrt{\cos^2 x + 3}} = -\sqrt{\cos^2 x + 3} + C;$$

9)
$$\int \frac{2x+3}{\sqrt{1-x^2}} dx = \int \frac{2x}{\sqrt{1-x^2}} dx + \int \frac{3}{\sqrt{1-x^2}} dx = -\int \frac{d(1-x^2)}{\sqrt{1-x^2}} + 3\arcsin x = -2\sqrt{1-x^2} + 3\arcsin x + C.$$

Примеры для самостоятельного решения

1.
$$\int \sqrt{2x+7} dx$$
. 2. $\int \sin(7x-3) dx$. 3. $\int \frac{dx}{\sqrt{1-25x^2}}$.

4.
$$\int \frac{x+5x^3}{\sqrt{1+x^4}} dx$$
. 5. $\int \frac{\cos x}{\sqrt[3]{\sin^2 x}} dx$. 6. $\int \frac{dx}{\cos^2 x \cdot \sqrt{1+\lg x}}$.

7.
$$\int \frac{dx}{x \ln x}$$
. 8. $\int \frac{e^x dx}{e^{2x} + 4}$. 9. $\int e^{-x^3} \cdot x^2 dx$. 10. $\int \frac{2x - \sqrt{\arcsin x}}{\sqrt{1 - x^2}} dx$.

Ответы. 1.
$$\frac{1}{3} \cdot (2x+7)^{3/2} + C$$
. 2. $-\frac{1}{7}\cos(7x-3) + C$. 3. $\frac{1}{5}\arcsin 5x + C$.

4.
$$\frac{1}{2} \ln \left| x^2 + \sqrt{1 + x^4} \right| + \frac{5}{2} \sqrt{1 + x^4} + C$$
. 5. $3 \cdot \sqrt[3]{\sin x} + C$.

6.
$$2\sqrt{1+\lg x} + C$$
 7. $\ln |\ln x| + C$ 8. $\frac{1}{2} \operatorname{arctg} \frac{e^x}{2} + C$.

9.
$$-\frac{1}{3}e^{-x^3} + C$$
. 10. $-2\sqrt{1-x^2} - \frac{2}{3}\sqrt{(\arcsin x)^3} + C$.

5.3. Метод интегрирования по частям

Пусть функции u(x) и v(x) дифференцируемы. Тогда справедлива формула

$$\int u \, dv = uv - \int v \, du \quad . \tag{5.2}$$

Данная формула применяется в случаях, когда подынтегральное выражение можно представить в виде произведения двух множителей u и dv, причем по виду функции dv легко можно восстановить функцию v, и вычисление интеграла $\int v \, du$ является более простой задачей, чем вычисление интеграла $\int u \, dv$.

Укажем, как выбирать множители u и dv в некоторых случаях:

- 1) в интегралах вида $\int P(x)e^{\alpha x}dx$, $\int P(x)\sin\alpha x\,dx$, $\int P(x)\cos\alpha x\,dx$, где P(x) многочлен, в качестве u выбираем многочлен P(x), чтобы понизить его степень;
- 2) в интегралах вида $\int P(x) \ln x \, dx$, $\int x \operatorname{arctg} x \, dx$, $\int \operatorname{arcsin} x \, dx$ за "u" следует взять функции $\ln x$, $\operatorname{arctg} x$, $\operatorname{arcsin} x$. В противном случае трудно восстановить функцию v по её дифференциалу.

Пример 5.3. Найти неопределенные интегралы:

1)
$$\int x \cos x \, dx$$
; 2) $\int x \ln x \, dx$; 3) $\int \operatorname{arctg} x \, dx$; 4) $\int \frac{x \cdot \operatorname{arctg} x}{\sqrt{1 + x^2}} dx$; 5) $\int \sqrt{a^2 - x^2} \, dx$.

Решение. 1) $\int x \cos x \, dx = I$. Используя рекомендации, положим u = x, $dv = \cos x \, dx$. Тогда du = dx, $v = \sin x$. Используя формулу (5.2), имеем:

$$I = \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

2)
$$\int x \ln x \, dx = \begin{vmatrix} u = \ln x \Rightarrow du = \frac{dx}{x} \\ dv = x dx \Rightarrow v = \int x dx = \frac{x^2}{2} \end{vmatrix} = \frac{x^2}{2} \cdot \ln x - \int \frac{x^2}{2} \cdot \frac{dx}{x} = \frac{x^2}{2} \cdot \ln x - \frac{x^2}{4} + C.$$

3)
$$\int \arctan x \, dx = \begin{vmatrix} u = \arctan x \Rightarrow du = \frac{dx}{1+x^2} \\ dv = dx \Rightarrow v = x \end{vmatrix} = x \cdot \arctan x - \int x \cdot \frac{dx}{1+x^2} = x \cdot \arctan x = x \cdot \cot x - \cot x = x \cdot \cot x =$$

$$= x \cdot \arctan x - \frac{1}{2} \int \frac{d(x^2 + 1)}{1 + x^2} = x \cdot \arctan x - \frac{1}{2} \ln(x^2 + 1) + C.$$

4)
$$\int \frac{x \cdot \arctan x}{\sqrt{1+x^2}} dx = I$$
. Положим $u = \arctan x$, $dv = \frac{x \cdot dx}{\sqrt{1+x^2}}$; тогда

$$du = \frac{dx}{1+x^2} , \quad v = \int \frac{x \cdot dx}{\sqrt{1+x^2}} = \frac{1}{2} \int \frac{d(x^2+1)}{\sqrt{1+x^2}} = \frac{1}{2} \cdot \frac{(x^2+1)^{\frac{1}{2}}}{\frac{1}{2}} = \sqrt{x^2+1} .$$

Таким образом,
$$I = \int \frac{x \cdot \arctan x}{\sqrt{1+x^2}} dx = \arctan x \cdot \sqrt{1+x^2} - \int \sqrt{1+x^2} \cdot \frac{dx}{1+x^2} = \arctan x \cdot \sqrt{1+x^2} - \int \frac{dx}{\sqrt{1+x^2}} = \arctan x \cdot \sqrt{1+x^2} - \ln \left| x + \sqrt{1+x^2} \right| + C$$
.

$$5)\int \sqrt{a^2-x^2}\,dx=I$$
. Положим $u=\sqrt{a^2-x^2}$, $dv=dx$. Тогда $du=-\frac{x}{\sqrt{a^2-x^2}}\,dx$, $v=x$.

Используя формулу (5.2) интегрирования по частям, получим

$$I = \int \sqrt{a^2 - x^2} \, dx = x\sqrt{a^2 - x^2} - \int \frac{\left(-x^2\right) dx}{\sqrt{a^2 - x^2}} = x\sqrt{a^2 - x^2} - \int \frac{\left(a^2 - x^2\right) - a^2}{\sqrt{a^2 - x^2}} dx =$$

$$= x\sqrt{a^2 - x^2} - \int \sqrt{a^2 - x^2} \, dx + a^2 \int \frac{dx}{\sqrt{a^2 - x^2}} = x\sqrt{a^2 - x^2} - \int \sqrt{a^2 - x^2} \, dx + a^2 \cdot \arcsin\frac{x}{a}.$$

Таким образом, имеем: $I = x \cdot \sqrt{a^2 - x^2} - I + a^2 \cdot \arcsin \frac{x}{a} \implies 2I = x \cdot \sqrt{a^2 - x^2} + a^2 \cdot \arcsin \frac{x}{a}$.

Тогда $I = \frac{1}{2} \cdot \left(x \sqrt{a^2 - x^2} + a^2 \cdot \arcsin \frac{x}{a} \right)$. Мы получили одну из первообразных. Чтобы записать множество первообразных, нужно добавить произвольное число C:

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \cdot \arcsin \frac{x}{a} \right) + C.$$

Пример 5.4. Найти интеграл $\int \frac{\cos^2 x}{\sin^3 x} dx$.

Положим $u = \cos x$, $dv = \frac{\cos x}{\sin^3 x} dx = \frac{d(\sin x)}{\sin^3 x}$. Здесь такой выбор u и dv менее очевиден, чем в предыдущих примерах. В выражение для dv мы включили $\cos x$, чтобы получить $d(\sin x)$ и легко вычислить v:

$$v = \int dv = \int \frac{d(\sin x)}{\sin^3 x} = \frac{\sin^{-2} x}{-2}.$$

Тогда по формуле интегрирования по частям получим

$$\int \frac{\cos^2 x}{\sin^3 x} dx = \frac{\cos x}{-2\sin^2 x} - \int \frac{-\sin x \, dx}{-2\sin^2 x} = -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \int \frac{dx}{\sin x} = -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \ln \left| \operatorname{tg} \frac{x}{2} \right| + C.$$

Здесь использована формула (8) из таблицы интегралов.

Примеры для самостоятельного решения

Найти интегралы: 1. $\int x \sin 2x dx$, 2. $\int x e^x dx$, 3. $\int \ln(x^2+1) dx$,

4.
$$\int \frac{\arcsin\sqrt{x}}{\sqrt{1-x}} dx$$
, 5. $\int \frac{x^3 dx}{\sqrt{1+x^2}}$, 6. $\int \sin(\ln x) dx$.

Указания. В 4-м примере положить $u = \arcsin \sqrt{x}$ и учесть, что

$$u' = \frac{1}{\sqrt{\left(1 - \sqrt{x}\right)^2}} \cdot \left(\sqrt{x}\right)' = \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}.$$

В 5-м примере положить $u = x^2$, $dv = \frac{x \, dx}{\sqrt{1 + x^2}}$.

В 6-м примере применить метод интегрирования по частям 2 раза.

Ответы.
$$1 \cdot \frac{1}{4} \sin 2x - \frac{1}{2}x \cos 2x + C$$
, $2 \cdot xe^x - e^x + C$, $3 \cdot x \ln(x^2 + 1) - 2x + 2 \operatorname{arctg} x + C$, $4 \cdot 2\sqrt{x} - 2\sqrt{1-x} \cdot \arcsin \sqrt{x} + C$, $5 \cdot x^2\sqrt{1+x^2} - \frac{2}{3}\sqrt{(1+x^2)^3} + C$, $6 \cdot \frac{x}{2}(\sin(\ln x) - \cos(\ln x)) + C$.

5.4. Метод замены переменной

Во многих случаях введение новой переменной интегрирования позволяет свести данный интеграл к более простому. Такой метод называется методом замены переменной или методом подстановки.

Пусть функция $u = \varphi(x)$ непрерывно дифференцируема на некотором промежутке и имеет обратную функцию $x = \psi(u)$. Тогда

$$\int f(u)du = \int f(\varphi(x))\varphi'(x)dx \mid_{x=\psi(u)} .$$
 (5.3)

Выражение, стоящее в правой части этой формулы, означают, что после отыскания интеграла вместо x нужно подставить его выражение через u.

Остановимся подробнее на применении формулы (5.3).

При замене переменной в интеграле $\int f(u) du$ нужно

- а) заменить переменную u на функцию $\varphi(x)$, заменить du на $\varphi'(x)dx$,
- б) вычислить получившийся интеграл,
- в) результат выразить через первоначальную переменную u.

Укажем некоторые рекомендации по выбору новой переменной. Пусть R(u,v) — рациональная функция, полученная из u,v с помощью сложения, вычитания, умножения, деления. Рекомендации по выбору новой переменной приведены в следующей таблице.

Тип интеграла	Замена	
$I_1 = \int R\left(u, \sqrt{a^2 - u^2}\right) du$	$u = a \cdot \sin x$	
$I_2 = \int R\left(u, \sqrt{a^2 + u^2}\right) du$	$u = a \cdot \operatorname{tg} x$	
$I_3 = \int R\left(u, \sqrt{u^2 - a^2}\right) du$	$u = \frac{a}{\sin x}$	
$I_4 = \int R\left(u, \sqrt[n]{\frac{au+b}{cu+d}}, \sqrt[m]{\frac{au+b}{cu+d}}\right) du$	$\frac{au+b}{cu+d} = x^k ,$ k - наименьшее общее кратное чисел m, n	

Пример 5.6. Найти интегралы: 1) $\int \frac{\sqrt{x}}{1+\sqrt[4]{x^3}} dx$; 2) $\int \frac{\sqrt{x-1}}{x} dx$; 3) $\int e^{\sqrt{x}} dx$.

Решение.

1). Имеем интеграл типа I_4 . Для вычисления интеграла произведем замену переменной: $x = t^4$, тогда $dx = 4t^3dt$ и $I = \int \frac{\sqrt{x}}{1+\sqrt[4]{x^3}} dx = \int \frac{t^2}{1+t^3} \cdot 4t^3dt = 4\int \frac{t^5}{1+t^3}dt$.

Выделим целую часть дроби $\frac{t^5}{1+t^3} = \frac{t^2 \cdot t^3}{1+t^3} = \frac{t^2 \cdot (t^3+1-1)}{1+t^3} = t^2 - \frac{t^2}{1+t^3} \ . \quad \text{Тогда}$

$$I = 4 \int \left(t^2 - \frac{t^2}{1+t^3} \right) dt = 4 \left(\int t^2 dt - \frac{1}{3} \int \frac{d\left(1+t^3\right)}{1+t^3} \right) = 4 \left(\frac{t^3}{3} - \frac{1}{3} \ln\left|t^3+1\right| \right) + C = \frac{4}{3} \left(t^3 - \ln\left|t^3+1\right| \right) + C.$$

Вернемся к переменной x, заменив $t = \sqrt[4]{x}$. Тогда $I = \frac{4}{3} \cdot \left(\sqrt[4]{x^3} - \ln \left| \sqrt[4]{x^3} + 1 \right| \right) + C$.

2). Имеем интеграл типа I_4 . Для вычисления интеграла $I = \int \frac{\sqrt{x-1}}{x} dx$ сделаем замену $t = \sqrt{x-1}$, откуда $x = t^2 + 1$, dx = 2t dt. Тогда

$$\int \frac{\sqrt{x-1}}{x} dx = \int \frac{t \cdot 2t}{t^2 + 1} dt = 2\int \frac{\left(t^2 + 1\right) - 1}{t^2 + 1} dt = \int \left(1 - \frac{1}{t^2 + 1}\right) dt =$$

$$= 2\left(t - \operatorname{arctg} t\right) + C = \left[t = \sqrt{x-1}\right] = 2\left(\sqrt{x-1} - \operatorname{arctg} \sqrt{x-1}\right) + C.$$

3). Для вычисления интеграла $I = \int e^{\sqrt{x}} dx$ сделаем замену $t = \sqrt{x}$. Тогда $x = t^2$, dx = 2t dt. Отсюда $I = 2\int t \cdot e^t dt$. Вычислим полученный интеграл с помощью формулы интегрирования по частям. Положим u = t, $dv = e^t dt$, тогда du = dt, $v = e^t$ и

$$I = 2(e^{t} \cdot t - \int e^{t} dt) = 2(e^{t} \cdot t - e^{t}) + C = 2e^{t}(t-1) + C$$

Вернемся к переменной x, заменив $t = \sqrt{x}$. Тогда $\int e^{\sqrt{x}} dx = 2e^{\sqrt{x}} (\sqrt{x} - 1) + C$.

Пример 5.7. Найти интеграл $I = \int \frac{\sqrt{a^2 - x^2}}{x} dx$.

Решение. Имеем интеграл типа I_1 . Положим $x = a \sin t$, тогда $dx = a \cdot \cos t \, dt$,

$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \int \frac{\sqrt{a^2 - a^2 \sin^2 t}}{a \sin t} \cdot a \cos t \, dt = a \int \frac{\cos^2 t}{\sin t} \, dt = a \int \frac{1 - \sin^2 t}{\sin t} \, dt =$$

$$= a \int \frac{dt}{\sin t} - a \int \sin t \, dt = a \ln \left| \frac{1}{\sin t} - \cot t \right| + a \cos t + C.$$

Вернемся к прежней переменной x:

$$\sin t = \frac{x}{a}, \quad \cos t = \sqrt{1 - \frac{x^2}{a^2}} = \frac{\sqrt{a^2 - x^2}}{a}, \quad \cot t = \frac{\cos t}{\sin t} = \frac{\sqrt{a^2 - x^2}}{x}.$$
 Следовательно,
$$I = a \ln \left| \frac{a}{x} - \frac{\sqrt{a^2 - x^2}}{x} \right| + \sqrt{a^2 - x^2} + C.$$

Пример 5.8. Найти интеграл $I = \int \frac{dx}{x^2 \sqrt{a^2 + x^2}}$.

Решение. Имеем интеграл типа I_2 . В соответствии с рекомендацией положим

$$x = a \operatorname{tg} t$$
. Тогда $dx = \frac{a}{\cos^2 t} dt$,

$$I = \int \frac{adt}{\cos^2 t \cdot a^2 \lg^2 t \cdot \sqrt{a^2 + a^2 \lg^2 t}} = \int \frac{adt}{\cos^2 t \cdot a^2 \cdot \frac{\sin^2 t}{\cos^2 t} \cdot a \cdot \frac{1}{\cos t}} = \frac{1}{a^2} \int \frac{\cos t \, dt}{\sin^2 t} = \frac{1}{a^2} \int \frac{d \sin t}{\sin^2 t} = -\frac{1}{a^2} \frac{1}{\sin t} + C.$$

Вернемся к прежней переменной x: $\operatorname{tg} t = \frac{x}{a}$, следовательно, $\operatorname{ctg} t = \frac{a}{x}$,

$$\frac{1}{\sin t} = \sqrt{1 + \operatorname{ctg}^2 t} = \frac{\sqrt{a^2 + x^2}}{x} \,. \quad \text{Итак}, \quad I = -\frac{1}{a^2} \cdot \frac{\sqrt{a^2 + x^2}}{x} + C \,.$$

Примеры для самостоятельного решения

1.
$$\int \frac{dx}{\sqrt{x}(1+\sqrt[3]{x})}$$
 (замена $x=t^6$), 2. $\int \frac{dx}{\sqrt{2x-1}-\sqrt[4]{2x-1}}$ (замена $2x-1=t^4$),

3.
$$\int \sin \sqrt{x+9} \, dx$$
 (3ameta $\sqrt{x+9} = t$), 4. $\int \frac{\sqrt{1-x^2}}{x^2} \, dx$ (3ameta $x = \sin t$),

5.
$$\int \frac{dx}{\sqrt{(a^2 + x^2)^3}}$$
 (3ameta $x = a \operatorname{tg} t$), 6. $\int \frac{dx}{x^2 \sqrt{x^2 - 9}}$ (3ameta $x = \frac{3}{\sin t}$).

Ответы

1.
$$6\sqrt[6]{x} - 6 \arctan \left(\sqrt[6]{x} + C \right)$$
, 2. $\sqrt{2x-1} + 2\sqrt[4]{2x-1} + \ln \left| \sqrt[4]{2x-1} - 1 \right| + C$,
3. $2 \sin \sqrt{x+9} - 2\sqrt{x+9} \cos \sqrt{x+9} + C$, 4. $-\frac{\sqrt{1-x^2}}{x} - \arcsin x + C$,

5.
$$\frac{x}{a^2 \sqrt{x^2 + a^2}} + C$$
, 6. $\frac{\sqrt{x^2 - 9}}{9x} + C$.

5.5. Интегрирование тригонометрических функций

При нахождении интегралов с помощью тригонометрических подстановок обычно приходят к интегралам от функций вида $\sin^{\alpha} x \cdot \cos^{\beta} x$. Рассмотрим интегрирование таких функций более подробно.

Выделим несколько случаев, имеющих особенно важное значение.

Случай 1. $\int \sin^{\alpha} x \cdot \cos^{\beta} x \, dx$, где α (или β) — **положительное нечётное** число. В этом случае следует отделить от нечетной степени $\sin x$ (или $\cos x$) одну степень и подвести ее под знак дифференциала.

Пример 5.10. Найти $\int \sin^4 x \cdot \cos^5 x \, dx$.

Решение. Подынтегральная функция содержит $\cos x$ в нечетной степени, поэтому отделим $\cos x$ и воспользуемся тем, что $\cos x \, dx = d(\sin x)$, а $\cos^2 x = 1 - \sin^2 x$. Тогда $\int \sin^4 x \cdot \cos^5 x \, dx = \int \sin^4 x \cdot \cos^4 x \cdot \cos x \, dx = \int \sin^4 x \cdot (1 - \sin^2 x)^2 \, d(\sin x) = \int \sin^4 x \, d\sin x - 2 \int \sin^6 x \, d\sin x + \int \sin^8 x \, d\sin x = \frac{1}{5} \sin^5 x - \frac{2}{7} \sin^7 x + \frac{1}{9} \sin^9 x + C$.

Пример 5.11. Найти $\int \frac{\sin^3 x \, dx}{\cos x \cdot \sqrt[3]{\cos x}}$.

Решение. Подынтегральная функция содержит $\sin x$ в нечетной степени, поэтому отделим $\sin x$ и воспользуемся тем, что $\sin x \, dx = -d(\cos x)$, а $\sin^2 x = 1 - \cos^2 x$.

Тогда
$$\int \frac{\sin^3 x \, dx}{\cos x \cdot \sqrt[3]{\cos x}} = \int \frac{\sin^2 x \cdot \sin x \, dx}{\cos x \cdot \sqrt[3]{\cos x}} = -\int \frac{1 - \cos^2 x}{(\cos x)^{4/3}} \, d\cos x =$$

$$= -\int \cos^{-4/3} x \, d\cos x + \int \cos^{2/3} x \, d\cos x = 3\cos^{-1/3} x + \frac{3}{5}\cos^{5/3} x + C = \frac{3}{\sqrt[3]{\cos x}} + \frac{3}{5} \cdot \sqrt[3]{\cos^5 x} + C.$$

Случай 2. $\int \sin^{\alpha} x \cdot \cos^{\beta} x \ dx$, где α и β – *четные неотрицательные* числа. В этом случае следует понизить степень, используя следующие формулы:

$$\sin x \cdot \cos x = \frac{1}{2}\sin 2x$$
, $\sin^2 x = \frac{1}{2}(1-\cos 2x)$, $\cos^2 x = \frac{1}{2}(1+\cos 2x)$.

Пример 5.12. Найти $\int \sin^2 x \cdot \cos^2 x \, dx$.

$$\int \sin^2 x \cdot \cos^2 x \, dx = \int \frac{1}{4} \sin^2 2x \, dx = \int \frac{1 - \cos 4x}{8} \, dx = \frac{1}{8} \int dx - \frac{1}{8} \int \cos 4x \, dx = \frac{x}{8} - \frac{\sin 4x}{32} + C.$$

Пример 5.13. Найти $\int \cos^4 x dx$.

$$\int \cos^4 x \, dx = \int \left(\frac{1+\cos 2x}{2}\right)^2 dx = \frac{1}{4} \int dx + \frac{1}{2} \int \cos 2x \, dx + \frac{1}{4} \int \cos^2 2x \, dx = \frac{1}{4} \int \frac{1}{4} \sin 2x + \frac{1}{4} \sin 2x + \frac{1}{4} \sin 4x + C = \frac{1}{4} \int \cos^4 x \, dx = \frac{1}{4} \int \cos^4 x \, dx$$

Случай 3. $\int \frac{\sin^{\alpha} x}{\cos^{\beta} x} dx$, где α , β — целые неотрицательные числа.

Здесь единой рекомендации нет. Выделим следующие случаи.

- а) $\beta \alpha = 1 \Rightarrow$ при четном α применяется метод интегрирования по частям (см. пример 5.4); при нечетном α имеем случай 1);
- б) $\beta \alpha = 2 \Rightarrow$ подынтегральное выражение выразить через tgx и d(tgx) или через ctgx и d(ctgx);
- в) $\beta \alpha > 2 \Rightarrow$ увеличить степень числителя, умножив его на выражение $\sin^2 x + \cos^2 x$, равное единице;
- г) $\beta \alpha \le 0 \Rightarrow$ в числителе заменить $\sin^2 x$ на $1 \cos^2 x$ или $\cos^2 x$ на $1 \sin^2 x$.

Пример 5.14. Найти
$$\int \frac{\sin^4 x \, dx}{\cos^6 x}$$
 $(\beta - \alpha = 2)$.

Решение.
$$\int \frac{\sin^4 x \, dx}{\cos^6 x} = \int \frac{\sin^4 x}{\cos^4 x} \cdot \frac{dx}{\cos^2 x} = \int tg^4 x \, d(tgx) = \frac{tg^5 x}{5} + C$$
.

Пример 5.15. Найти
$$\int \frac{dx}{\sin^4 x}$$
 $(\beta - \alpha > 2)$.

Pewerue.
$$\int \frac{dx}{\sin^4 x} = \int \frac{\cos^2 x + \sin^2 x}{\sin^4 x} = \int \frac{\cos^2 x}{\sin^4 x} dx + \int \frac{dx}{\sin^2 x} =$$

$$= \int \frac{\cos^2 x}{\sin^2 x} \cdot \frac{dx}{\sin^2 x} + (-\cot x) + C = -\int \cot^2 x d(\cot x) - \cot x + C = -\frac{\cot^3 x}{3} - \cot x + C.$$

Пример 5.16. Найти $\int \frac{\sin^2 x \, dx}{\cos^2 x}$

Решение.
$$\int \frac{\sin^2 x \, dx}{\cos^2 x} = \int \frac{1 - \cos^2 x}{\cos^2 x} dx = \int \frac{dx}{\cos^2 x} - \int dx = \operatorname{tg} x - x + C$$
.

Примеры для самостоятельного решения

Найти интегралы: 1. $\int \mathsf{tg}^5 x \, dx$, 2. $\int \sin^3 x \cos^2 x \, dx$, 3. $\int \cos^2 x \, dx$, 4. $\int \sin^4 x \, dx$,

5.
$$\int \sin^2 x \cos^4 x \, dx$$
, 6. $\int \frac{dx}{\sin^4 x}$, 7. $\int \frac{dx}{\sin \frac{x}{2} \cos^3 \frac{x}{2}}$, 8. $\int tg^2 5x \, dx$.

Ответы. 1.
$$\frac{\lg^4 x}{4} - \frac{\lg^2 x}{2} - \ln|\cos x| + C$$
, 2. $\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C$, 3. $\frac{x}{2} + \frac{\sin 2x}{4} + C$,

4.
$$\frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C$$
, 5. $\frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C$, 6. $-\cot x - \frac{\cot^3 x}{3} + C$.

7.
$$\frac{1}{\cos^2 \frac{x}{2}} + 2 \ln \left| \operatorname{tg} \frac{x}{2} \right| + C$$
, 8. $\frac{1}{5} \operatorname{tg} 5x - x + C$.

5.6. Интегрирование функций, содержащих квадратный трехчлен

Рассмотрим интегралы следующих трех типов:

$$I_1 = \int \frac{dx}{\left(ax^2 + bx + c\right)^k}$$
, $I_2 = \int \frac{\left(mx + n\right)dx}{\left(ax^2 + bx + c\right)^k}$, $I_3 = \int \frac{dx}{x\sqrt{ax^2 + bx + c}}$ $(k = 1)$ или $k = \frac{1}{2}$).

Отметим, что интегралы 1-го и 2-го типа при k=1 возникают при интегрировании дробно-рациональных функций (п. 5.7).

Укажем общие рекомендации по отысканию интегралов этих трех типов.

В интеграле I_1 выделить из квадратного трехчлена полный квадрат.

В интеграле I_2 выделить в числителе производную квадратного трехчлена.

В интеграле I_3 вынести x из-под корня.

Поясним рекомендации на примерах.

Пример 5.17. Найти интеграл $\int \frac{dx}{\sqrt{x^2+6x+25}}$.

Решение. Для нахождения интеграла следует выделить полный квадрат из квадратного трехчлена:

$$\int \frac{dx}{\sqrt{x^2 + 6x + 25}} = \int \frac{dx}{\sqrt{(x+3)^2 + 16}} = \int \frac{d(x+3)}{\sqrt{(x+3)^2 + 16}} = \ln\left|\left(x+3\right) + \sqrt{(x+3)^2 + 16} + C\right|.$$

Пример 5.18. Найти интеграл $\int \frac{dx}{2x^2-2x+3}$.

Решение. Выделим из квадратного трехчлена полный квадрат:

$$2x^2 - 2x + 3 = 2 \cdot \left(x^2 - x + \frac{3}{2}\right) = 2 \cdot \left(x^2 - 2 \cdot \frac{1}{2} \cdot x + \frac{1}{4} - \frac{1}{4} + \frac{3}{2}\right) = 2 \cdot \left(\left(x - \frac{1}{2}\right)^2 + \left(\sqrt{5}/2\right)^2\right).$$
 Тогда
$$\int \frac{dx}{2x^2 - 2x + 3} = \frac{1}{2} \cdot \int \frac{d\left(x - \frac{1}{2}\right)}{\left(x - \frac{1}{2}\right)^2 + \left(\sqrt{5}/2\right)^2} = \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{2x - 1}{\sqrt{5}} + C \ .$$

Пример 5.19. Найти интеграл $\int \frac{3x-1}{x^2-4x+8} dx$.

Решение. Выделим в числителе производную квадратного трехчлена, тогда

$$\int \frac{3x-1}{x^2 - 4x + 8} dx = \int \frac{\frac{3}{2}(2x-4) - 1 + 6}{x^2 - 4x + 8} dx = \frac{3}{2} \int \frac{2x-4}{x^2 - 4x + 8} dx + 5 \int \frac{dx}{x^2 - 4x + 8} =$$

$$= \frac{3}{2} \int \frac{d(x^2 - 4x + 8)}{x^2 - 4x + 8} + 5 \int \frac{dx}{(x-2)^2 + 2^2} = \frac{3}{2} \ln(x^2 - 4x + 8) + \frac{5}{2} \arctan \frac{x-2}{2} + C.$$

Пример 5.20. Найти интеграл $\int \frac{dx}{x\sqrt{x^2+1}}$

Pewerue.
$$\int \frac{dx}{x\sqrt{x^2+1}} = \int \frac{dx}{x^2\sqrt{1/x^2+1}} = -\int \frac{d(1/x)}{\sqrt{1/x^2+1}} = -\ln\left|\frac{1}{x} + \sqrt{1/x^2+1}\right| + C.$$

Примеры для самостоятельного решения

Найти интегралы

1.
$$\int \frac{3x-2}{x^2-4x+5} dx$$
, 2. $\int \frac{2x-8}{\sqrt{1-x-x^2}} dx$, 3. $\int \frac{dx}{x\sqrt{x^2+x-1}}$.

Ответы.

1.
$$\frac{3}{2}\ln|x^2 - 4x + 5| + 4\arctan(x - 2) + C$$
,
2. $-2\sqrt{1 - x - x^2} - 9\arcsin\frac{2x + 1}{\sqrt{5}} + C$, 3. $-\arcsin\frac{2 - x}{x\sqrt{5}} + C$.

5.7. Интегрирование рациональных дробей

Перед интегрированием рациональной дроби $\frac{P(x)}{Q(x)}$ надо сделать следующие алгебраические преобразования и вычисления:

- 1) если рациональная дробь неправильная, то выделить из нее целую часть, то есть представить в виде $\frac{P(x)}{Q(x)} = M(x) + \frac{P_1(x)}{Q(x)}$, где M(x) многочлен, а $\frac{P_1(x)}{Q(x)}$ правильная рациональная дробь;
- 2) разложить знаменатель дроби на линейные и квадратные множители: $Q(x) = (x-a)^m...(x^2+px+q)^n...$, где $p^2-4q<0$, то есть трехчлен x^2+px+q не разлагается на линейные множители с действительными коэффициентами;
- 3) правильную рациональную дробь разложить на простейшие дроби:

$$\frac{P_{1}(x)}{(x-a)^{m} ... (x^{2} + px + q)^{n}} = \frac{A_{1}}{(x-a)^{m}} + \frac{A_{2}}{(x-a)^{m-1}} + ... + \frac{A_{m}}{(x-a)} + ... + \frac{B_{1}x + C_{1}}{(x^{2} + px + q)^{n}} + \frac{B_{2}x + C_{2}}{(x^{2} + px + q)^{n-1}} + ... + \frac{B_{n}x + C_{n}}{(x^{2} + px + q)};$$

4) вычислить коэффициенты $A_1, A_2, ..., A_m, ..., B_1, C_1, ..., B_n, C_n,$

В результате интегрирование рациональной дроби сведется к нахождению интегралов от многочлена и от простейших рациональных дробей.

Пример 5.21. Найти интеграл
$$\int \frac{x^2 + 2x + 6}{(x-1)\cdot(x-2)\cdot(x-4)} dx$$
.

Решение. Данную рациональную дробь можно представить в виде суммы простейших дробей следующего вида

$$\frac{x^2 + 2x + 6}{(x-1)\cdot(x-2)\cdot(x-4)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-4}.$$

Умножив это равенство на (x-1)(x-2)(x-4), получим:

$$x^{2} + 2x + 6 = A(x-2)(x-4) + B(x-1)(x-4) + C(x-1)(x-2)$$
.

Положим в этом равенстве x=1, тогда $1^2+2\cdot 1+6=A(1-2)(1-4)$, откуда A=3. Полагая x=2, получим 14=-2B, B=-7; полагая x=4, имеем 30=6C, C=5. Итак, разложение рациональной дроби на простейшие имеет вид:

$$\frac{x^2 + 2x + 6}{(x-1)(x-2)(x-4)} = \frac{3}{x-1} - \frac{7}{x-2} + \frac{5}{x-4}.$$

Таким образом, $\int \frac{x^2 + 2x + 6}{(x-1)\cdot(x-2)\cdot(x-4)} dx = 3\int \frac{dx}{x-1} - 7\int \frac{dx}{x-2} + 5\int \frac{dx}{x-4} =$

$$= 3\ln|x-1| - 7\ln|x-2| + 5\ln|x-4| + C = \ln\left|\frac{(x-1)^3(x-4)^5}{(x-2)^7}\right| + C.$$

Пример 5.22. Найти интеграл $\int \frac{x^2+1}{(x-1)^3(x+3)} dx$.

Решение. Знаменатель имеет действительные корни, некоторые из них кратные. Множителю $(x-1)^3$ соответствует сумма трех дробей, а множителю (x+3)

— только одна дробь:
$$\frac{x^2+1}{(x-1)^3(x+3)} = \frac{A}{(x-1)^3} + \frac{B}{(x-1)^2} + \frac{C}{x-1} + \frac{D}{x+3}.$$

Умножив это равенство на $(x-1)^3(x+3)$, получим:

$$x^{2} + 1 = A(x+3) + B(x-1)(x+3) + C(x-1)^{2}(x+3) + D(x-1)^{3}.$$
 (5.4)

Положим в этом равенстве x = 1 и x = -3:

$$x = 1$$
: $2 = 4A$, $A = \frac{1}{2}$, $x = -3$: $10 = -64D$, $D = -\frac{5}{32}$

Для отыскания B, C сравним коэффициенты в равенстве (5.4) при старшей степени x, то есть при x^3 . В левой части нет члена с x^3 , то есть коэффициент при x^3 равен C+D. Поэтому C+D=0, значит, $C=-D=\frac{5}{32}$.

Сравним коэффициенты при x^2 или придадим x какое-нибудь значение. Пусть x=0, тогда 1=3A-3B+3C-D, или $1=\frac{3}{2}-3B+\frac{15}{32}+\frac{5}{32}$, то есть $B=\frac{3}{8}$.

Итак,

$$\frac{x^2 + 1}{(x-1)^3(x+3)} = \frac{1}{2} \frac{1}{(x-3)^3} + \frac{3}{8} \frac{1}{(x-1)^2} + \frac{5}{32} \frac{1}{(x-1)} - \frac{5}{32(x+3)},$$

$$\int \frac{x^2 + 1}{(x-1)^3(x+3)} dx = \frac{1}{2} \int \frac{dx}{(x-3)^3} + \frac{3}{8} \int \frac{dx}{(x-1)^2} + \frac{5}{32} \int \frac{dx}{(x-1)} - \frac{5}{32} \int \frac{dx}{x+3} =$$

$$= -\frac{1}{4(x-1)^2} - \frac{3}{8} \cdot \frac{1}{x-1} + \frac{5}{32} \ln|x-1| - \frac{5}{32} \ln|x+3| + C.$$

Пример 5.23. Найти интеграл $\int \frac{dx}{x^5 - x^2}$.

Решение. Разложим знаменатель на множители:

$$x^5 - x^2 = x^2(x^3 - 1) = x^2(x - 1)(x^2 + x + 1).$$

Тогда

$$\frac{1}{x^5 - x^2} = \frac{1}{x^2(x-1)(x^2 + x + 1)} = \frac{A}{x^2} + \frac{B}{x} + \frac{C}{x-1} + \frac{Dx + E}{x^2 + x + 1}.$$

Умножив это равенство на $x^2(x^3-1) = x^2(x-1)(x^2+x+1)$, получим:

$$1 = A(x^3 - 1) + Bx(x^3 - 1) + Cx^2(x^2 + x + 1) + (Dx + E)x^2(x - 1).$$
 (5.5)

При x = 0 имеем 1 = -A, A = -1; при x = 1 имеем 1 = 3C, $C = \frac{1}{3}$.

Для отыскания еще трех коэффициентов B, D, E сравним в равенстве (5.5) ко-

эффициенты при степенях
$$x$$
:
$$\begin{cases}
\text{при } x^4 : B + C + D = 0, \\
\text{при } x^2 : C - E = 0, \\
\text{при } x : -B = 0.
\end{cases} \Rightarrow B = 0, D = \frac{-1}{3}, E = \frac{1}{3}.$$

Следовательно.

$$\int \frac{dx}{x^5 - x^2} = -\int \frac{dx}{x^2} + \frac{1}{3} \int \frac{dx}{x - 1} - \frac{1}{3} \int \frac{x - 1}{x^2 + x + 1} dx = \frac{1}{x} + \frac{1}{3} \ln|x - 1| - \frac{1}{6} \int \frac{(2x + 1) - 3}{x^2 + x + 1} dx = \frac{1}{x} + \frac{1}{3} \ln|x - 1| - \frac{1}{6} \ln(x^2 + x + 1) + \frac{1}{2} \int \frac{dx}{(x + 1/2)^2 + 3/4} = \frac{1}{x} + \frac{1}{6} \ln \frac{(x - 1)^2}{x^2 + x + 1} + \frac{1}{\sqrt{2}} \arctan \frac{2x + 1}{\sqrt{3}} + C.$$

Пример 5.24. Найти интеграл $\int \frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} dx$.

Решение. Выделим целую часть неправильной дроби, поделив числитель на знаменатель: $\frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} = x + 3 + \frac{3x + 1}{x^2 + 2}$. Тогда

$$\int \frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} dx = \int \left(x + 3 + \frac{3x + 1}{x^2 + 2}\right) dx = \int x dx + 3 \int dx + \int \frac{3x + 1}{x^2 + 2} dx =$$

$$= \frac{x^2}{2} + 3x + \frac{3}{2} \int \frac{2x dx}{x^2 + 2} + \int \frac{dx}{x^2 + 2} = \frac{1}{2} x^2 + 3x + \frac{3}{2} \ln(x^2 + 2) + \frac{1}{\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + C.$$

Пример 5.25. Найти интеграл $\int \frac{x^2 dx}{(x-1)^5}$.

Решение. Подынтегральная функция является правильной рациональной дробью. Можно найти интеграл, представив дробь в виде суммы простейших дробей. Однако нахождение интеграла можно значительно упростить, если произвести замену переменной x-1=t, тогда x=t+1, dx=dt. В результате получим:

$$\int \frac{x^2 dx}{(x-1)^5} = \int \frac{(t+1)^2}{t^5} dt = \int \frac{t^2 + 2t + 1}{t^5} dt = \int \frac{dt}{t^3} + 2\int \frac{dt}{t^4} + \int \frac{dt}{t^5} =$$

$$= -\frac{1}{2t^2} - \frac{2}{3t^3} - \frac{1}{4t^4} + C = -\frac{1}{2(x-1)^2} - \frac{2}{3(x-1)^3} - \frac{1}{4(x-1)^4} + C.$$

Примеры для самостоятельного решения

Найти интегралы:

$$1. \int \frac{5x^{3} + 2}{x^{3} - 5x^{2} + 4x} dx, \ 2. \int \frac{dx}{x(x+1)^{2}}, \ 3. \int \frac{dx}{x^{4} - x^{2}}, \ 4. \int \frac{dx}{x^{3} + 1}, \ 5. \int \frac{dx}{x\left(9x^{5} + 4\right)}, \ 6. \int \frac{x^{4} dx}{9x^{5} + 4}.$$

$$\textit{Omsembl.} \quad 1.5x + \frac{1}{2} \ln|x| - \frac{7}{3} \ln|x - 1| + \frac{161}{6} \ln|x - 4| + C, \quad 2. \quad \frac{1}{1+x} + \ln|x| - \ln|x + 1| + C,$$

$$3. \frac{1}{x} + \frac{1}{2} \ln|x - 1| - \frac{1}{2} \ln|x + 1| + C, \quad 4. \quad -\frac{1}{6} \ln|x^{2} - x + 1| + \frac{1}{3} \ln|x + 1| + \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} + C,$$

$$5. -\frac{1}{20} \ln|9 + 4x^{-5}| + C, \quad 6. \quad \frac{1}{45} \ln|9x^{5} + 4| + C.$$

6. Определенный интеграл

Пусть на отрезке [a,b] задана функция f(x). Разобьем отрезок [a,b] произвольным образом на n ячеек с длинами Δx_1 , Δx_2 ,..., Δx_n . В этих ячейках выберем произвольно точки \overline{x}_1 , \overline{x}_2 ,..., \overline{x}_n . Если существует предел интегральной суммы

 $\sum_{k=1}^{n} f(\overline{x}_{k}) \cdot \Delta x_{k}$ при стремлении максимальной из длин ячеек d к нулю, не зависящий от способа разбиения отрезка [a,b] и от выбора промежуточных точек \overline{x}_{k} , то этот предел называется определенным интегралом функции f(x) по отрезку [a,b] и обозначается $\int_{a}^{b} f(x) dx$. Итак,

$$\int_{a}^{b} f(x) dx = \lim_{d \to 0} \sum_{k=1}^{n} f(\overline{x}_{k}) \cdot \Delta x_{k}.$$

6.1. Свойства определенного интеграла

1)
$$\int_{a}^{b} [\lambda \cdot f(x) + \mu \cdot g(x)] dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

- 2). $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ для любого расположения точек a, b, c.
- 3). Если $f(x) \ge g(x)$ на [a,b], то $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$.
- 4). Если $m \le f(x) \le M$ на отрезке [a,b], то $m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$.

5).
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx \quad (a \leq b).$$

6). Если функция f(x) непрерывна на отрезке [a,b], то на этом отрезке найдется точка c такая, что $\int\limits_a^b f(x)dx = f(c)\cdot(b-a)$. Значение f(c) называют средним значением f_{cp} функции f(x) на отрезке [a,b], т.е. $f_{cp} = \frac{1}{b-a}\int\limits_b^b f(x)dx$.

7). Пусть функция f(t) непрерывна на отрезке [a,b]. Тогда производная определенного интеграла от этой функции по переменному верхнему пределу равна значению подынтегральной функции на верхнем пределе, т.е. $\left(\int\limits_a^x f(t)dt\right)_x'=f(x)$.

Пример 6.1. Доказать, что $\frac{2}{e^{16}} \le \int_{2}^{4} e^{-x^{2}} dx \le \frac{2}{e^{4}}$.

Решение. Нужно оценить интеграл $\int_{2}^{4} e^{-x^{2}} dx$. Известно, что функция $f(x) = e^{-x^{2}}$ монотонно убывает, следовательно, наименьшее значение m функции

 $f(x) = e^{-x^2}$ на отрезке [2;4] равно значению f(4), а наибольшее M = f(2), т.е. $m = e^{-16} = \frac{1}{e^{16}}$, $M = e^{-4} = \frac{1}{e^4}$, и по свойству 4) имеем: $\frac{2}{e^{16}} \le \int_2^4 e^{-x^2} dx \le \frac{2}{e^4}$, что и требовалось доказать.

Пример 6.2. Оценить интеграл $\int_{-1}^{1} \frac{dx}{\sqrt{4-x^2-x^3}}$.

Решение. По свойству 4) имеем: $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, где m — наименьшее, M — наибольшее значения функции f(x) на отрезке [a,b].

Найдем m и M для функции $f(x) = \frac{1}{\sqrt{4-x^2-x^3}}$ на отрезке [-1; 1] . Вычислим:

1) производную
$$f'(x) = -\frac{1}{2} \cdot \frac{-2x - 3x^2}{\sqrt{\left(4 - x^2 - x^3\right)^3}};$$

2) критические точки, решив уравнение f'(x) = 0; $\frac{2x + 3x^2}{2\sqrt{(4 - x^2 - x^3)^3}} = 0$; $2x + 3x^2 = 0$; x(2 + 3x) = 0; $x_1 = 0$, $x_2 = -\frac{2}{3}$; знаменатель $(4 - x^2 - x^3)$ на отрезке [-1; 1] в нуль не обращается; поэтому других критических точек нет;

3) значения функции f(x) в критических точках и на концах отрезка:

$$f(0) = \frac{1}{2}$$
; $f\left(-\frac{2}{3}\right) = \frac{1}{\sqrt{4 - \frac{4}{9} + \frac{8}{27}}} = \frac{3\sqrt{3}}{2\sqrt{26}} \approx 0,509$; $f(1) = \frac{1}{\sqrt{2}} \approx 0,709$, $f(-1) = \frac{1}{2}$.

Из множества полученных значений наименьшее значение $m = \frac{1}{2} = 0,5$ и наибольшее значение M = 0,709. Поэтому

$$0,5 \cdot 2 \le \int_{-1}^{1} \frac{dx}{\sqrt{4 - x^2 - x^3}} \le 0,709 \cdot 2$$
 или $1 \le \int_{-1}^{1} \frac{dx}{\sqrt{4 - x^2 - x^3}} \le 1,42$.

Пример 6.3. Найти среднее значение функции $f(x) = \frac{1}{\sin^4 x}$ на отрезке $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$.

Решение. По свойству 6) имеем $f_{cp} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$. Вычислим интеграл и среднее значение функции:

$$\int_{\pi/4}^{\pi/2} \frac{dx}{\sin^4 x} = \int_{\pi/4}^{\pi/2} \frac{\left(\cos^2 x + \sin^2 x\right)}{\sin^4 x} dx = \int_{\pi/4}^{\pi/2} \frac{\cos^2 x}{\sin^4 x} dx + \int_{\pi/4}^{\pi/2} \frac{dx}{\sin^2 x} = -\int_{\pi/4}^{\pi/2} \operatorname{ctg}^2 x \, d\left(\operatorname{ctg} x\right) - \operatorname{ctg} x \bigg|_{\pi/4}^{\pi/2} =$$

$$= -\frac{\operatorname{ctg}^3 x}{3} \bigg|_{\pi/4}^{\pi/2} - (0-1) = \frac{4}{3}, \qquad f_{cp} = \frac{1}{\pi/2 - \pi/4} \cdot \frac{4}{3} = \frac{16}{3\pi}.$$

Пример 6.4. Вычислить $\frac{dy}{dx}$, если 1) $y(x) = \int_0^x \frac{dt}{\sqrt{1+t^4}}$; 2) $y(x) = \int_0^{x^3} \frac{dt}{\sqrt{1+t^4}}$, 3) функция y(x) задана параметрическими уравнениями $y(t) = \int_5^{\ln t} e^z dz$, $x(t) = \int_2^t \frac{\ln z}{z} dz$. Решение. 1). По свойству 7) имеем: $y'(x) = \frac{1}{\sqrt{1+x^4}}$.

2). Функция $y(x) = \int_0^{x^3} \frac{dt}{\sqrt{1+t^4}}$ есть сложная функция переменной x: $y = \int_0^u \frac{dt}{\sqrt{1+t^4}}$, где $u = x^3$. Используя формулу для производной сложной функции, получим: $y_x' = y_u' \cdot u_x' = \frac{1}{\sqrt{1+u^4}} \cdot 3x^2 = \frac{1}{\sqrt{1+x^{12}}} \cdot 3x^2.$

3). Для функции y(x), заданной параметрическими уравнениями $x(t) = \int_{2}^{t} \frac{\ln z}{z} dz$,

$$y(t) = \int_{5}^{\ln t} e^{z} dz$$
, вычислим y'_{t} , x'_{t} и $y'_{x} = \frac{y'_{t}}{x'_{t}}$:

$$y'_{t} = \left(\int_{5}^{\ln t} e^{z} dz\right)'_{t} = e^{\ln t} (\ln t)' = t \cdot \frac{1}{t} = 1, \quad x'_{t} = \left(\int_{2}^{t} \frac{\ln z}{z} dz\right)'_{t} = \frac{\ln t}{t}, \quad y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{1}{(\ln t)/t} = \frac{t}{\ln t}.$$

Примеры для самостоятельного решения

- 1). Оценить интегралы $I_1 = \int_0^1 \sqrt{1+x^4} \, dx$, $I_2 = \int_2^5 \frac{dx}{\ln x}$.
- 2). Выяснить, какой из интегралов больше: $\int\limits_{0}^{\pi/2} \sin^{10}x \, dx \, \text{ или } \int\limits_{0}^{\pi/2} \sin^{2}x \, dx \, .$
- 3). Найти производную $\frac{dy}{dx}$ для функции y(x), заданной параметрическими уравнениями $x = \int\limits_{1}^{t^2} z \ln z \, dz$, $y = \int\limits_{.2}^{1} z^2 \ln z \, dz$.
- 4). Найти среднее значение функции $f(x) = \frac{1}{x}$ на отрезке [1;3]; Ответы: 1) $0 \le I_1 \le \sqrt{2}$, $\frac{3}{\ln 5} \le I_2 \le \frac{3}{\ln 2}$; 2) второй; 3) $-t^2$; 4) $\frac{1}{2} \ln 3$.

6.2. Методы вычисления определенного интеграла

Основная формула для вычисления определенного интеграла — формула Ньютона-Лейбница

$$\int_{a}^{b} f(x) dx = F(b) - F(a) , \quad \text{где } F(x) - \text{первообразная для } функции \ f(x).$$

При вычислении определенного интеграла следует учитывать следующие полезные свойства:

- 1) если функция f(x) нечетная на отрезке [-a,a], то $\int_{-a}^{a} f(x) dx = 0$;
- 2) если функция f(x) четная на отрезке [-a,a], то $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$;
- 3) если функция f(x) имеет период T, то $\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$.

Основные методы (как и при вычислениии неопределенного интеграла) — метод интегрирования по частям и метод замены переменной.

Пусть u(x), v(x) — дифференцируемые функции. Тогда

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du \Big|.$$

Это – формула интегрирования по частям для определенного интеграла. Рекомендации по применению этой формулы такие же, как для неопределенного интеграла.

При замене переменной в определенном интеграле $\int_{a}^{b} f(x) dx$ следует:

- 1) заменить переменную x на удачно подобранную функцию $\varphi(t)$;
- 2) заменить dx на $d\varphi(t) = \varphi'(t) dt$;
- 3) заменить отрезок [a,b] изменения переменной x на отрезок $[\alpha,\beta]$ изменения переменной t, найдя α и β из условий $\varphi(\alpha) = a$, $\varphi(\beta) = b$;
- 4) вычислить получившийся определенный интеграл.

Таким образом,

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Отметим, что при вычислении определенного интеграла по этой формуле не надо возвращаться к первоначальной переменной, как это приходилось делать при замене переменной в неопределенном интеграле. Рекомендации по выбору новой переменной такие же, как и для неопределенного интеграла.

Пример 6.5. Вычислить интегралы: $I_1 = \int_0^3 \frac{(3x-1)dx}{x^2+9}$, $I_2 = \int_{-1/2}^{1/2} \frac{2x-\sqrt[3]{\arcsin x}}{\sqrt{1-x^2}} dx$,

$$I_3 = \int_0^1 \frac{\sqrt{e^x} dx}{\sqrt{e^x + e^{-x}}}, \quad I_4 = \int_0^{2\pi} \frac{\sin^9 x dx}{\sqrt{1 + \cos^2 x}}.$$

Решение. 1). Рассмотрим интеграл $I_1 = \int_0^3 \frac{(3x-1)dx}{x^2+9}$. Используя свойства интеграла и формулу Ньютона-Лейбница, получим:

$$\int_{0}^{3} \frac{(3x-1)dx}{x^{2}+9} = 3\int_{0}^{3} \frac{x dx}{x^{2}+9} - \int_{0}^{3} \frac{dx}{x^{2}+9} = 3\int_{0}^{3} \frac{\frac{1}{2}d(x^{2}+9)}{x^{2}+9} - \frac{1}{3}\operatorname{arctg}\frac{x}{3}\Big|_{0}^{3} =$$

$$= \frac{3}{2}\ln(x^{2}+9)\Big|_{0}^{3} - \frac{1}{3}(\operatorname{arctg} 1 - \operatorname{arctg} 0) = \frac{3}{2}(\ln 18 - \ln 9) - \frac{1}{3} \cdot \frac{\pi}{4} = \frac{3}{2}\ln 2 - \frac{\pi}{12}.$$

- 2). В интеграле $I_2 = \int_{-1/2}^{1/2} \frac{2x \sqrt[3]{\arcsin x}}{\sqrt{1 x^2}} dx$ подынтегральная функция является нечетной на отрезке $\left[-1/2; 1/2\right]$ (проверьте, что f(-x) = -f(x)), следовательно, интеграл I_2 равен нулю.
- 3). В интеграле I_3 умножим числитель и знаменатель на $\sqrt{e^x}$. Тогда

$$I_{3} = \int_{0}^{1} \frac{\sqrt{e^{x}} dx}{\sqrt{e^{x} + e^{-x}}} = \int_{0}^{1} \frac{e^{x} dx}{\sqrt{e^{2x} + 1}} = \int_{0}^{1} \frac{de^{x}}{\sqrt{(e^{x})^{2} + 1}} = \ln\left(e^{x} + \sqrt{e^{2x} + 1}\right) \Big|_{0}^{1} = \ln\left(e + \sqrt{e^{2} + 1}\right) - \ln\left(1 + \sqrt{2}\right) = \ln\frac{e + \sqrt{e^{2} + 1}}{1 + \sqrt{2}}.$$

4). В интеграле I_4 подынтегральная функция имеет период $T=2\pi$.

Воспользуемся тем, что $\int_{0}^{T} f(x)dx = \int_{a}^{T+a} f(x)dx$ и подынтегральная функция является нечетной. Тогда

$$I_4 = \int_0^{2\pi} \frac{\sin^9 x \, dx}{\sqrt{1 + \cos^2 x}} = \int_{-\pi}^{\pi} \frac{\sin^9 x \, dx}{\sqrt{1 + \cos^2 x}} = 0.$$

Пример 6.6. Вычислить интегралы: $I_1 = \int_{\pi/4}^{\pi/3} \frac{x \, dx}{\sin^2 x}$, $I_2 = \int_{1}^{2} x^3 e^{x^2} dx$.

Решение. Интегралы I_1 , I_2 вычислим методом интегрирования по частям:

$$\int_{a}^{b} u \, dv = (uv) \Big|_{a}^{b} - \int_{a}^{b} v \, du .$$

1). Для вычисления интеграла $I_1 = \int_{\pi/4}^{\pi/3} \frac{x \, dx}{\sin^2 x}$ положим u = x, $dv = \frac{dx}{\sin^2 x}$. Тогда

du = dx, $v = \int \frac{dx}{\sin^2 x} = -\cot x$. По формуле интегрирования по частям имеем:

$$I_{1} = \int_{\pi/4}^{\pi/2} \frac{x \, dx}{\sin^{2} x} = x \cdot (-\cot x) \Big|_{\pi/4}^{\pi/2} + \int_{\pi/4}^{\pi/2} \cot x \, dx = \frac{\pi}{4} + \int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx = \frac{\pi}{4} + \int_{\pi/4}^{\pi/2} \frac{d \left(\sin x\right)}{\sin x} = \frac{\pi}{4} + \ln\left|\sin x\right| \Big|_{\pi/4}^{\pi/2} = \frac{\pi}{4} - \ln\frac{\sqrt{2}}{2} = \frac{\pi}{4} + \ln\sqrt{2} = \frac{\pi}{4} + \frac{1}{2}\ln 2.$$

2). При вычислении интеграла $I_2=\int\limits_1^2 x^3e^{x^2}dx$ положим $u=x^2,\ dv=xe^{x^2}$. Тогда $du=dx^2,\ v=\int xe^{x^2}dx=\frac{1}{2}\int e^{x^2}dx^2=\frac{1}{2}e^{x^2},$ $I_2=\frac{1}{2}x^2e^{x^2}\big|_1^2-\int\limits_1^2\frac{1}{2}e^{x^2}dx^2=2e^4-\frac{e}{2}-\frac{1}{2}e^{x^2}\big|_1^2==2e^4-\frac{e}{2}-\frac{e^4}{2}+\frac{e}{2}=\frac{3e^4}{2}\,.$

Заметим, что если положить $u = x^3$, $dv = e^{x^2} dx$, то мы не сможем найти v, так как интеграл $\int e^{x^2} dx$ — «неберущийся».

Пример 6.7. Вычислить интегралы: $I_1 = \int_1^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} dx$; $I_2 = \int_0^5 \frac{dx}{2x+\sqrt{3x+1}}$.

Решение. Для вычисления интегралов применим метод замены переменной в определенном интеграле.

1). Для вычисления интеграла $I_1 = \int_1^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} dx$ сделаем замену переменной $x = \operatorname{tg} t$, найдем $dx = \frac{dt}{\cos^2 t}$ и новые пределы интегрирования (пределы изменения переменной t): $x = 1 \Rightarrow t = \operatorname{arctg} 1 = \frac{\pi}{4}$; $x = \sqrt{3} \Rightarrow t = \operatorname{arctg} \sqrt{3} = \frac{\pi}{3}$. Получим:

$$\int_{1}^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} dx = \int_{\pi/4}^{\pi/3} \frac{\sqrt{1+tg^2 t}}{tg^2 t} \cdot \frac{dt}{\cos^2 t} = \int_{\pi/4}^{\pi/3} \frac{\frac{1}{\cos t} dt}{\frac{\sin^2 t}{\cos^2 t} \cdot \cos^2 t} = \int_{\pi/4}^{\pi/3} \frac{dt}{\cos t \cdot \sin^2 t} = \int_{\pi/4}^{\pi/3} \frac{\sin^2 t + \cos^2 t}{\cos t \cdot \sin^2 t} dt = \int_{\pi/4}^{\pi/3} \frac{\sin^2 t + \cos^2 t}{\cos^2 t} dt$$

$$= \int_{\pi/4}^{\pi/3} \frac{dt}{\cos t} + \int_{\pi/4}^{\pi/3} \frac{\cos t \, dt}{\sin^2 t} = \ln \left(\frac{1}{\cos t} + \operatorname{tg} t \right) \left| \frac{\pi/3}{\pi/4} + \int_{\pi/4}^{\pi/3} \frac{d \left(\sin t \right)}{\sin^2 t} \right| = \ln \frac{2 + \sqrt{3}}{\sqrt{2} - 1} - \frac{1}{\sin t} \left| \frac{\pi/3}{\pi/4} \right| = \ln \frac{2 + \sqrt{3}}{\sqrt{2} - 1} - \frac{2}{\sqrt{3}} + \sqrt{2}.$$

2). Для вычисления интеграла $I_2 = \int_0^5 \frac{dx}{2x + \sqrt{3x + 1}}$ сделаем замену переменной $t = \sqrt{3x + 1}$ или $x = (t^2 - 1)/3$, найдем dx = (2t dt)/3 и новые пределы интегрирования (пределы изменения переменной t): $x = 0 \Rightarrow t = 1$; $x = 5 \Rightarrow t = 4$. Получим

$$\int_{0}^{5} \frac{dx}{2x + \sqrt{3x + 1}} = \int_{1}^{4} \frac{2t \, dt}{3\left(2\left(t^{2} - 1\right)/3 + t\right)} = \int_{1}^{4} \frac{2t \, dt}{2t^{2} + 3t - 2} = \int_{1}^{4} \frac{(4t + 3)/2 - 3/2}{2t^{2} + 3t - 2} dt =$$

$$= \frac{1}{2} \int_{1}^{4} \frac{d\left(2t^{2} + 3t - 2\right)}{2t^{2} + 3t - 2} - \frac{3}{4} \int_{1}^{4} \frac{dt}{t^{2} + 3t/2 - 1} = \frac{1}{2} \ln\left(2t^{2} + 3t - 2\right) \Big|_{1}^{4} - \frac{3}{2 \cdot 2} \int_{1}^{4} \frac{dt}{(t + 3/4)^{2} - 25/16} =$$

$$= \frac{1}{2} \ln\frac{42}{3} - \frac{3}{4} \cdot \frac{1}{2 \cdot \frac{5}{4}} \ln\left|\frac{t + 3/4 - 5/4}{t + 3/4 + 5/4}\right| \left|\frac{4}{1} = \frac{1}{2} \ln14 - \frac{3}{10} \ln\frac{7}{2} = \frac{1}{5} \ln112$$

Пример 6.8. Вычислить интеграл
$$\int_{-\pi/4}^{\pi/4} \frac{x^7 - 5x^5 - 3x^3 + 8 \operatorname{tg}^2 x}{\cos^2 x} dx.$$

Решение. При вычислении интеграла воспользуемся утверждениями:

$$\int_{-a}^{a} f(x) dx = 0$$
 — для нечетной функции, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ — для четной функции.

Функция
$$\frac{x^7 - 5x^5 - 3x^3}{\cos^2 x}$$
 является нечетной на $[-\pi/4; \pi/4]$ и $\int_{-\pi/4}^{\pi/4} \frac{x^7 - 5x^5 - 3x^3}{\cos^2 x} dx = 0$.

Функция $\frac{8 \operatorname{tg}^2 x}{\cos^2 x}$ является четной на $[-\pi/4; \pi/4]$, поэтому

$$\int_{-\pi/4}^{\pi/4} \frac{8 \operatorname{tg}^2 x dx}{\cos^2 x} = 16 \int_{0}^{\pi/4} \frac{\operatorname{tg}^2 x dx}{\cos^2 x} = 16 \int_{0}^{\pi/4} \operatorname{tg}^2 x \ d(\operatorname{tg} x) = 16 \frac{\operatorname{tg}^3 x}{3} \Big|_{0}^{\pi/4} = \frac{16}{3}.$$

Примеры для самостоятельного решения

$$I. \ \, \text{Вычислить:} \ \, I_1 = \int\limits_{-1}^0 \sqrt{1+x} \, dx \, , \quad I_2 = \int\limits_{1}^2 \frac{x \, dx}{\left(x^2+1\right)^2} \, , \quad I_3 = \int\limits_{0}^1 \frac{dx}{x^4+4x+5} \, \, , \, \, I_4 = \int\limits_{1}^3 \ln x \, dx \, ,$$

$$I_5 = \int_0^{1/2} \arcsin x \, dx \,, \ I_6 = \int_0^{\pi} x^3 \sin x \, dx \,, \ I_7 = \int_3^8 \frac{x \, dx}{\sqrt{1+x}} \,, \ I_8 = \int_{\sqrt{2}/2}^1 \frac{\sqrt{1-x^2}}{x^2} \, dx \,, \ I_9 = \int_{2\sqrt{2}}^4 \frac{\sqrt{x^2-8}}{x^2} \, dx \,.$$

Ответы:
$$I_1 = 2/3$$
, $I_2 = 3/20$, $I_3 = \arctan 3 - \arctan 2$,

$$I_5 = \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$$
, $I_6 = \pi^3 - 6\pi$, $I_7 = \frac{32}{3}$, $I_8 = 1 - \frac{\pi}{4}$, $I_9 = \frac{\sqrt{2}}{96}$.

2. Доказать равенства:

a)
$$\int_{-\pi/8}^{\pi/8} x^{10} \sin^9 x \, dx = 0; \quad 6) \int_{0}^{2\pi} \cos^4 x \sin^3 x \, dx = 0; \quad B) \int_{-1}^{1} \frac{x^7 - 3x^5 + x^2 + 9x}{x^6 + 1} \, dx = 2 \int_{0}^{1} \frac{x^2 dx}{x^6 + 1} = \frac{\pi}{6}.$$

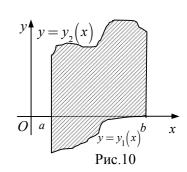
В примере 2.6) использовать свойство: $\int_{0}^{2\pi} f(x) dx = \int_{-\pi}^{\pi} f(x) dx$, если $f(x+2\pi) = f(x)$.

6.3. Геометрические приложения определенного интеграла

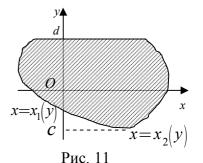
Площадь плоской фигуры

Пусть фигура в плоскости XOY ограничена линиями $y=y_1(x),\ y=y_2(x),\ x=a,\ x=b,$ причем $y_2(x)\geq y_1(x)$ на [a,b] (рис.10). Площадь S такой фигуры

$$S = \int_{a}^{b} [y_2(x) - y_1(x)] dx.$$



Пусть фигура в плоскости *XOY* (рис.11) ограничена линиями $x=x_1(y), \quad x=x_2(y), \quad y=c, \quad y=d$, причем $x_2(y) \geq x_1(y)$ на [c,d] Площадь S такой фигуры

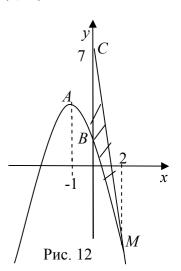


$$S = \int_{C}^{d} [x_2(y) - x_1(y)] dy.$$

Пример 6.9. Вычислить площадь фигуры, ограниченной параболой $y = -x^2 - 2x + 3$, осью ординат и касательной к параболе в точке M(2,-5).

Решение. Построим заданные линии (рис. 12).

Уравнение $y=-x^2-2x+3$ или $y=-(x+1)^2+4$ определяет параболу с вершиной в точке A(-1;4) с осью симметрии, параллельной оси OY (прямая x=-1). Составим уравнение касательной к параболе в точке M(2,-5). Угловой коэффициент касательной $k=y'(2)=(-2x-2)\big|_{x=2}=-6$. Уравнение касательной: y+5=-6(x-2) или y=-6x+7. Построим прямую по точкам M(2;-5) и C(0;7). В примере нужно вычислить площадь фигуры MBC. Снизу фигура ограничена параболой $y_1=-x^2-2x+3$, сверху прямой $y_2=-6x+7$, значения переменной x принадлежат отрезку [0;2]. Для вычисления площади воспользуемся форму-



лой:
$$S = \int_{a}^{b} [y_2(x) - y_1(x)] dx$$
. Получим:

$$S = \int_{0}^{2} (-6x + 7 + x^{2} + 2x - 3) dx = \int_{0}^{2} (x^{2} - 4x + 4) dx = \int_{0}^{2} (x - 2)^{2} dx = \frac{(x - 2)^{3}}{3} \Big|_{0}^{2} = \frac{8}{3}.$$

Пример 6.10. Найти площадь фигуры, заключенной между линиями $y = \arcsin x$, $y = \arccos x$ и осью абсцисс.

Решение. Построим заданные линии и заштрихуем фигуру, площадь которой нужно вычислить (рис. 13). Найдем координаты точки пересечения линий, решив уравнение $\arcsin x = \arccos x$. Из курса тригонометрии из-

вестно, что $x=\frac{\sqrt{2}}{2}, y=\frac{\pi}{4}$. Площадь S фигуры есть сумма площадей двух фигур:

$$S = S_1 + S_2$$
 , где $S_1 = \int_0^{\sqrt{2}/2} \arcsin x \, dx$, $S_2 = \int_{\sqrt{2}/2}^1 \arccos x \, dx$.

Площадь S этой же фигуры можно рассматривать как разность площадей S_3 и S_4 двух криволинейных трапеций с основаниями на оси OY, где

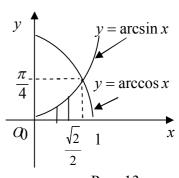


Рис. 13

$$S_3 = \int_{c}^{d} x(y) \, dy = \int_{0}^{\pi/4} \cos y \, dy = \sin y \Big|_{0}^{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}, \quad S_4 = \int_{0}^{\pi/4} \sin y \, dy = -\cos y \Big|_{0}^{\pi/4} = 1 - \frac{\sqrt{2}}{2}.$$

Площадь фигуры $S=S_3-S_4=rac{\sqrt{2}}{2}-\left(1-rac{\sqrt{2}}{2}
ight)=\sqrt{2}-1$. Очевидно, что вычислений при

решении задачи вторым методом значительно меньше, чем при решении первым.

Примеры для самостоятельного решения

1. Вычислить площадь фигуры, ограниченной линиями

a)
$$y = \frac{x^2}{3}$$
, $y = 4 - \frac{2}{3}x^2$; 6) $y = 2x - x^2$, $y = -x$. Ombem: a) $\frac{32}{3}$, 6) $\frac{9}{2}$.

2. Вычислить площадь фигуры, ограниченной кривой $y = x^3$, прямой y = 8 и Ответ: 12. осью ОУ.

Объем тела вращения

Объем V_{OX} тела, полученного при вращении вокруг оси OX фигуры, ограниченной кривой $y=y\left(x\right)$, осью OX и прямыми $x=a,\ x=b$, вычисляется по формуле $V_{OX}=\pi\int\limits_{-b}^{b}y^{2}(x)\,dx\;,\quad$ или $V_{OX}=\pi\int\limits_{-b}^{b}y^{2}dx\;.$

$$V_{OX} = \pi \int_{a}^{b} y^2(x) dx$$
, или $V_{OX} = \pi \int_{a}^{b} y^2 dx$

Аналогично вычисляется объем V_{OY} тела, полученного при вращении вокруг оси OY фигуры, ограниченной линией x=x(y), осью OY, прямыми $y=c,\ y=d$: $V_{OY}=\pi\int^d x^2(y)dy\ ,\quad$ или $V_{OY}=\pi\int^d x^2dy\ .$

$$V_{OY} = \pi \int_{c}^{d} x^2(y) dy$$
, или $V_{OY} = \pi \int_{c}^{d} x^2 dy$.

Пример 6.11. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = (x-1)^2$, x = 0, x = 2, y = 0, вокруг оси OX.

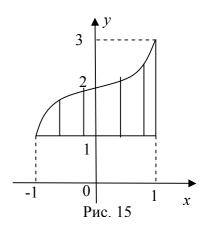
Решение. Построим линии, ограничивающие фигуру (рис. 14). Это – парабола $y = (x-1)^2$ с вершиной в точке (1;0) и осью симметрии параллельной оси OY, прямые x = 0 (ось OY), y = 0 (ось OX), прямая x = 2, параллельная оси OY. Объем тела, полученного при вращении фигуры вокруг оси ОХ (сечение см. на рис. 14), вычислим по формуле

$$V_{ox} = \pi \int_{a}^{b} y^{2}(x) dx.$$

$$(x-1)^{5} |_{2}^{2} = 2$$

Получим $V_{ox} = \pi \int_{1}^{2} (x-1)^4 dx = \pi \frac{(x-1)^5}{5} \Big|_{0}^{2} = \frac{2\pi}{5}$.

Пример 6.12. Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями $y = x^3 + 2$, x = 1, y = 1.



Решение. Построим линии, ограничивающие фигуру (рис. 15). Для вычисления объема тела вращения непосредственно воспользоваться формулой нельзя, т.к. снизу фигура ограничена не осью OX, а прямой y=1. Объем тела вращения будет равен разности объемов V_1 и V_2 : $V_{ox} = V_1 - V_2$, где V_1 есть объем тела вращения вокруг оси OX фигуры, ограниченной линиями $y=x^3+2$, x=1, x=-1, y=0, V_2 -объем цилиндра радиусом r=1 и высотой h=2. Вычислим V_1 и V_2 :

$$V_1 = \pi \int_{-1}^{1} (x^3 + 2)^2 dx = \pi \int_{-1}^{1} \left(x^6 + 4 + 4x^3 \right) dx = 2\pi \int_{0}^{1} (x^6 + 4) dx = 2\pi \left(x^7 / 7 + 4x \right) \Big|_{0}^{1} = \frac{58\pi}{7}.$$

Здесь мы воспользовались тем, что $\int_{-1}^{1} (x^6 + 4) dx = 2 \int_{0}^{1} (x^6 + 4) dx$ как интеграл от чет-

ной функции, $\int_{-1}^{1} 4x^3 dx = 0$ как интеграл от нечетной функции, $V_2 = \pi r^2 h = 2\pi$. Тогда

$$V_{ox} = V_1 - V_2 = \frac{58\pi}{7} - 2\pi = \frac{44\pi}{7}$$
.

Пример 6.13. Вычислить объем тела, полученного при вращении вокруг оси *ОУ* криволинейной трапеции, ограниченной осью абсцисс, прямыми x = 0, x = 2 и кривой $y = e^x$ (рис.16).

Решение. Объем тела вращения $V_{oy} = V_1 - V_2$, где V_1 — объем цилиндра радиусом r=2 и высотой $h=e^2$, $V_1=\pi r^2h=4\pi e^2$, V_2 — объем тела, полученного при вращении вокруг оси OY криволинейного треугольника, ограниченного линией $y=e^x$, прямыми x=0, $y=e^2$. Объем V_2 вычислим по формуле $V_{oy}=\pi\int^d x^2(y)dy$. Из уравнения $y=e^x$ найдем $x=\ln y$. Тогда

е² у

1

0

2

х

Рис. 16

$$V_{2} = \pi \int_{1}^{e^{2}} \ln^{2} y \, dy = \begin{vmatrix} u = \ln^{2} y, & du = 2 \ln y \, \frac{dy}{y} \\ dv = dy, & v = y \end{vmatrix} = \pi \left(y \ln^{2} y \Big|_{1}^{e^{2}} - 2 \int_{1}^{e^{2}} \ln y \, dy \right) = \begin{vmatrix} u = \ln y, & du = \frac{dy}{y} \\ dv = dy, & v = y \end{vmatrix} = \pi \left(4 e^{2} - 2 \left(y \ln y \Big|_{1}^{e^{2}} - \int_{1}^{e^{2}} y \, \frac{dy}{y} \right) \right) = \pi \left(4 e^{2} - 2 \left(2 e^{2} - y \Big|_{1}^{e^{2}} \right) \right) = \pi \left(4 e^{2} - 4 e^{2} + 2 e^{2} - 2 \right) = \pi \left(2 e^{2} - 2 \right).$$

Объем тела вращения первоначальной криволинейной трапеции вокруг оси ОУ:

$$V_{ov} = V_1 - V_2 = 4\pi e^2 - \pi (2e^2 - 2) = 2\pi (e^2 + 1)$$
.

Примеры для самостоятельного решения

- 1. Фигура, ограниченная эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, вращается
 - а) вокруг оси OX, б) вокруг оси OY.

Найти объемы получающихся эллипсоидов вращения.

Omsem: a)
$$\frac{4}{3}\pi ab^2$$
; б) $\frac{4}{3}\pi a^2b$.

2. Фигура, ограниченная дугами парабол $y = x^2$ и $y^2 = x$, вращается вокруг оси ОХ. Вычислить объем тела вращения.

Omeem: 0.3π .

7. Несобственные интегралы

При введении определенного интеграла мы предполагали, что отрезок [a,b]- конечный, а функция f(x) ограничена на этом отрезке. Если нарушается хотя бы одно из этих условий, то вводят обобщение определенного интеграла – несобственные интегралы.

7.1. Несобственные интегралы первого рода

Несобственным интегралом первого рода (по бесконечному промежутку) от функции f(x) называется

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится. Если же этот предел не существует или бесконечен, то говорят, что несобственный интеграл расходится.

Аналогично определяется несобственный интеграл и для промежутка $(-\infty, b]$:

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx .$$

Несобственный интеграл $\int_{-\infty}^{+\infty} f(x) dx$ определяется равенством $\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$,

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

где c – любое число. Несобственный интеграл в левой части называется сходящимся, если сходится каждый несобственный интеграл в правой части.

Пусть F(x) – первообразная для функции f(x) на промежутке $[a,\infty)$ и $F(+\infty) = \lim_{b \to +\infty} F(b)$. Тогда

$$\int_{a}^{\infty} f(x) dx = F(+\infty) - F(a) = F(x) \Big|_{a}^{+\infty}.$$

Эту формулу называют обобщенной формулой Ньютона-Лейбница. Аналогично, если обозначить $F(-\infty) = \lim_{h \to \infty} F(h)$, то

$$\int_{-\infty}^{b} f(x)dx = F(x) \begin{vmatrix} b \\ -\infty \end{vmatrix}$$

$$\int_{-\infty}^{b} f(x)dx = F(x) \Big|_{-\infty}^{b}, \qquad \int_{-\infty}^{+\infty} f(x) dx = F(x) \Big|_{-\infty}^{+\infty}$$

Пример 7.1. Вычислить несобственные интегралы или установить их расходимость:

1)
$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^{3/2}}$$
, 2) $\int_{-\infty}^{\infty} \frac{2x \, dx}{x^2 + 1}$, 3) $\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2 + 1}}$, 4) $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$, 5) $\int_{0}^{\infty} x \sin x \, dx$.

Решение. Воспользуемся обобщенной формулой Ньютона-Лейбница

$$\int_{a}^{\infty} f(x) dx = F(x) \Big|_{a}^{\infty} = F(\infty) - F(a) :$$

1)
$$\int_{e}^{\infty} \frac{dx}{x (\ln x)^{3/2}} = \int_{e}^{\infty} \frac{d(\ln x)}{(\ln x)^{3/2}} = -2 \frac{1}{(\ln x)^{1/2}} \Big|_{e}^{\infty} = -2 \cdot \left(0 - \frac{1}{(\ln e)^{1/2}}\right) = 2;$$

2)
$$\int_{-\infty}^{\infty} \frac{2x \, dx}{x^2 + 1} = \int_{-\infty}^{a} \frac{2x \, dx}{x^2 + 1} + \int_{a}^{\infty} \frac{2x \, dx}{x^2 + 1}$$
; интеграл расходится, т.к.

$$\int_{a}^{\infty} \frac{2x \, dx}{x^2 + 1} = \int_{a}^{\infty} \frac{d(x^2 + 1)}{x^2 + 1} = \ln(x^2 + 1) \Big|_{a}^{\infty} = \infty ;$$

3)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}} = \int_{1}^{\infty} \frac{dx}{x^2\sqrt{1+1/x^2}} = -\int_{1}^{\infty} \frac{d(1/x)}{\sqrt{(1/x)^2+1}} = -\ln\left(1/x + \sqrt{1/x^2+1}\right)\Big|_{1}^{\infty} = \ln\left(1 + \sqrt{2}\right);$$

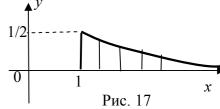
4)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \int_{-\infty}^{\infty} \frac{dx}{(x+1)^2 + 1} = \arctan(x+1) \Big|_{-\infty}^{\infty} = \frac{\pi}{2} + \frac{\pi}{2} = \pi;$$

5)
$$\int_{0}^{\infty} x \sin x \, dx = \left| \begin{array}{c} u = x, & du = dx \\ dv = \sin x \, dx, & v = -\cos x \end{array} \right| = -x \cos x \Big|_{0}^{\infty} + \int_{0}^{\infty} \cos x \, dx \; ;$$

интеграл расходится, т.к. не существует предел $\lim_{x\to\infty}(x\cos x)$.

Пример 7.2. Вычислить площадь фигуры, ограниченной линиями $y = \frac{1}{r^2(r+1)}$, x = 1 и осью абсцисс.

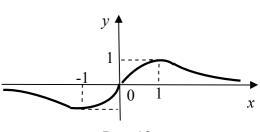
Решение. Построим фигуру, ограниченную данными линиями (рис. 17). Площадь S полученной фигуры равна:



$$S = \int_{1}^{\infty} \frac{dx}{x^{2}(x+1)} = \int_{1}^{\infty} \frac{(1+x)-x}{x^{2}(x+1)} dx = \int_{1}^{\infty} \frac{dx}{x^{2}} - \int_{1}^{\infty} \frac{dx}{x(x+1)} =$$

$$= \frac{-1}{x} \Big|_{1}^{\infty} - \int_{1}^{\infty} \frac{dx}{(x+1/2)^{2} - 1/4} = 1 - \ln \frac{(x+1/2) - 1/2}{(x+1/2) + 1/2} \Big|_{1}^{\infty} = 1 - \left(\lim_{x \to \infty} \ln \frac{x}{x+1} - \ln \frac{1}{2} \right) = 1 - \ln 2.$$

Пример 7.3. Найти площадь фигуры, заключенной между линией $y = xe^{-x^2}$ и ее асимптотой. *Решение*. Прямая y = 0 является горизонтальной асимптотой графика функции $y = xe^{-x^2}$, т.к.



$$\lim_{x \to \infty} x e^{-x^{2}} = \lim_{x \to \infty} \frac{x}{e^{x^{2}}} = 0.$$

Построим фигуру, ограниченную линиями y = 0 и $y = xe^{-x^2}$ (рис. 18). Очевидно, что площадь S всей фигуры равна $2S_1$, где

$$S_1 = \int_0^\infty x e^{-x^2} dx = -\frac{1}{2} \int_0^\infty e^{-x^2} d(-x^2) = -\frac{1}{2} e^{-x^2} \Big|_0^\infty = \frac{1}{2}.$$

Тогда, $S = 2S_1 = 1$.

Примеры для самостоятельного решения

1. Вычислить несобственные интегралы или установить их расходимость:

a)
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^3+1)^2}$$
, $\int_{0}^{\infty} \frac{dx}{x \ln x}$, $\int_{0}^{\infty} e^{-\sqrt{x}} dx$.

Ответ: a) $\frac{1}{3}$, б) расходится, в) 2.

2. Найти площадь фигуры, ограниченной линиями $y = x^2$, $y = \frac{1}{x^2}$ и осью абсцисс.

Ответ: 8/3

3. Фигура ограничена линиями $y = \frac{1}{x^3}$, x = 1 ($x \ge 1$) и осью *OX*. Найти объем тела, образованного при вращении этой фигуры вокруг оси *OX*. *Ответ*: $\pi/5$.

3.2. Несобственные интегралы второго рода

Для функции f(x), неограниченной вблизи точки x = b, несобственный интеграл определяется следующим образом:

$$\int_{a}^{b} f(x) dx = \lim_{b_{1} \to b \to 0} \int_{a}^{b_{1}} f(x) dx.$$

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся, в противном случае несобственный интеграл называется расходящимся.

Аналогично для функции f(x), неограниченной вблизи точки x = a, несобственный интеграл определяется следующим образом:

$$\int_{a}^{b} f(x) dx = \lim_{a_1 \to a+0} \int_{a_1}^{b} f(x) dx.$$

Для функция f(x) неограниченной вблизи точки x = c (a < c < b) несобственный интеграл определяется равенством

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Если каждый из интегралов в правой части равенства сходится, то несобственный интеграл $\int_a^b f(x) dx$ называется сходящимся, в противном случае — расходящимся.

Для функции f(x), **неограниченной вблизи точки** x = b, имеем аналог формулы Ньютона-Лейбница:

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b}, \text{ где } F(b) = \lim_{x \to b-0} F(x).$$

Аналогично для функции f(x), **неограниченной вблизи точки** x=a,

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b}, \text{ где } F(a) = \lim_{x \to a+0} F(x).$$

Пример 7.4. Вычислить несобственные интегралы или установить их расходимость:

1)
$$\int_{1}^{e} \frac{dx}{x\sqrt{\ln x}}$$
, 2) $\int_{1}^{e} \frac{dx}{x(\ln x)^{2}}$, 3) $\int_{3}^{5} \frac{x^{2}dx}{\sqrt{(x-3)(5-x)}}$, 4) $\int_{-1}^{1} \frac{3x^{2}+2}{\sqrt[3]{x^{5}}} dx$.

Решение. Во всех предложенных интегралах на интервалах интегрирования существуют особые точки, в которых подынтегральные функции неограничены, поэтому интегралы являются несобственными. Для вычисления интегралов будем использовать обобщенную формулу Ньютона-Лейбница.

1). В первом интеграле особая точка $x = 1 \pmod{\ln 1}$. Вычислим интеграл:

$$\int_{1}^{e} \frac{dx}{x\sqrt{\ln x}} = \int_{1}^{e} \frac{d(\ln x)}{\sqrt{\ln x}} = 2\sqrt{\ln x} \Big|_{1}^{e} = 2.$$

- 2). Интеграл $\int_{1}^{e} \frac{dx}{x(\ln x)^2} = \int_{1}^{e} \frac{d(\ln x)}{(\ln x)^2} = -\frac{1}{\ln x} \left| \frac{e}{1} \right| = \infty$, т.е. интеграл расходится.
- 3). Подынтегральная функция интеграла $\int_3^5 \frac{x^2 dx}{\sqrt{(x-3)(5-x)}}$ имеет две особые точки

x = 3, x = 5, поэтому представим интеграл в виде суммы двух интегралов:

$$\int_{3}^{5} \frac{dx}{\sqrt{(x-3)(5-x)}} = \int_{3}^{4} \frac{dx}{\sqrt{-x^{2}+8x-15}} + \int_{4}^{5} \frac{dx}{\sqrt{-x^{2}+8x-15}} = \int_{3}^{4} \frac{d(x-4)}{\sqrt{1-(x-4)^{2}}} + \int_{4}^{5} \frac{d(x-4)}{\sqrt{1-(x-4)^{2}}} = \\ = \arcsin(x-4) \left| \frac{4}{3} + \arcsin(x-4) \right| \frac{5}{4} = \left(0 - \frac{-\pi}{2}\right) + \left(\frac{\pi}{2} - 0\right) = \pi.$$

4). Точка x = 0 является особой для функции $\frac{3x^2 + 2}{\sqrt[3]{x^5}}$ и расположена внутри отрезка [-1, 1]. По определению

$$\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^5}} dx = \int_{-1}^{0} \frac{3x^2 + 2}{\sqrt[3]{x^5}} dx + \int_{0}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^5}} dx.$$

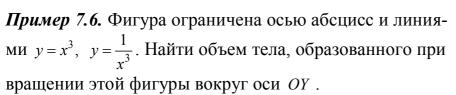
Интеграл $\int_{-1}^{0} \frac{2}{\sqrt[3]{x^5}} dx = -\frac{2 \cdot 3}{2} \frac{1}{\sqrt[3]{x^2}} \Big|_{-1}^{0} = \infty$, т.е. расходится, поэтому $\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^5}} dx$ также расходится.

Пример 7.5. Вычислить площадь фигуры, ограниченной линиями

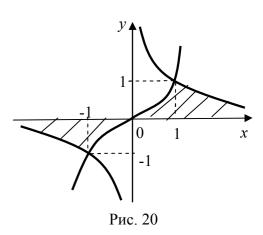
$$x = 0$$
, $x = 1$, $y = 0$, $y = \frac{1}{\sqrt{1 - x^2}}$.

Решение. Построим фигуру, ограниченную заданными линиями (рис.19). Площадь этой фигуры вычисляется с помощью несобственного интеграла (x=1- особая точка):

$$S = \int_{0}^{1} y \, dx = \int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}} = \arcsin x \Big|_{0}^{1} = \frac{\pi}{2} \, .$$



Решение. Построим фигуру, ограниченную данными линиями (рис. 20). Так как фигура симметрична относительно начала координат, то искомый объем V равен удвоенному объему, получаемому при вращении части фигуры при $x \ge 0$. Разрешим уравнения линий относительно $x: x_1 = \sqrt[3]{y}, \ x_2 = \frac{1}{\sqrt[3]{y}}$. Рассмотрим две фигуры.



1

0

1

Рис. 19

Первая фигура ограничена линиями x = 0, y = 1, $x_1 = \sqrt[3]{y}$ ($y \in [0, 1]$). При вращении этой фигуры вокруг оси *OY* получим тело, объем которого

$$V_1 = \pi \int_0^1 x_1^2(y) dy = \pi \int_0^1 y^{2/3} dy = \frac{3}{5}\pi.$$

Вторая фигура ограничена линиями $x_2 = \frac{1}{\sqrt[3]{y}}, y = 0, y = 1, x = 0$ $(y \in [0;1])$. При

вращении этой фигуры вокруг оси ОУ получим тело, объем которого равен

$$V_2 = \pi \int_0^1 x_2^2(y) dy = \pi \int_0^1 \frac{dy}{y^{2/3}} = 3\pi$$
.

Тогда объем тела, получаемого при вращении вокруг оси OY фигуры, ограниченной линиями $x_1 = \sqrt[3]{y}, \ x_2 = \frac{1}{\sqrt[3]{y}}$ и осью абсцисс $(x \ge 0)$, равен

$$V = V_2 - V_1 = 3\pi - \frac{3}{5}\pi = \frac{12\pi}{5}$$
.

Объем тела, получаемого при вращении вокруг оси ОУ всей фигуры, равен

$$V_{oy} = 2V = \frac{24}{5}\pi \ .$$

Примеры для самостоятельного решения

1. Вычислить несобственные интегралы или установить их расходимость:

a)
$$\int_{1}^{2} \frac{x \, dx}{\sqrt{x-1}}$$
; 6) $\int_{1}^{e} \frac{dx}{x \ln x}$; B) $\int_{1}^{5} \frac{dx}{x^2 - 4x}$; Γ) $\int_{-1}^{1} \frac{x+1}{\sqrt[5]{x^3}} \, dx$.

Ответ: a) $\frac{8}{3}$; б) расходится; в) расходится; г) $\frac{10}{7}$.

- 2. Фигура, ограниченная линиями $y = \frac{1}{x^3}, \ x = 1 \ (x \ge 1)$ и осью OX, вращается вокруг оси ординат. Найти объем тела вращения. Ответ: 2π
- 3. Найти площадь фигуры, ограниченной линиями $y = \frac{1}{\sqrt{x-1}}, \ x=1, \ x=2, \ y=0$.

Ответ: 2.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 2002г., 443 с.
- 2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч.1. М.: Изд-во «Оникс», 2004. 304 с.
- 3. Задачи и упражнения по математическому анализу для втузов/ под ред. Б.П Демидовича. М.: «Изд-во Астрель», 2003. 495с.
- 4. Письменный Д.Т. Конспект лекций по высшей математике. Ч.1. М.: Айриспресс, 2003. 288 с.
- 5. Сборник задач по математике для вузов. Линейная алгебра и основы математического анализа/ под ред. А.В. Ефимова, Б. П. Демидовича. М.: Наука, 1996. 464 с.
- 6. Краснов М.Л. Вся высшая математика./М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. Ч.1. М.: Эдиториал УРСС, 2004. 352 с.
- 7. Краснов М.Л. Задачи и примеры с подробными решениями./М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. Ч.1. М.: Эдиториал УРСС, 2004. 172 с.
- 8. Черненко В.Д. Высшая математика в примерах и задачах. / В. Д. Черненко. С-Птб.: Политехника, 2003. 703 с.
- 9. Минькова Р.М. Математический анализ. Часть 1. / Р.М. Минькова. Екатеринбург: УГТУ УПИ, 2006. 80 с.

Учебное издание

Наталия Владимировна Чуксина, Ревекка Максовна Минькова

Руководство к решению задач по математическому анализу

Редактор Н.П. Кубыщенко

Подисано в печать 16.08.2013 Формат $60 \times 84~1/16$ Бумага типографская Офсетная печать Усл. печ.л. 3.65 Уч.-изд. л. 3,4 Тираж Заказ Цена "С"

Редакционно-издательский отдел УрФУ 620002, Екатеринбург, ул. Мира, 19